Supporting Information

Ultrasensitive NO₂ gas sensor based on hierarchical Cu₂O/CuO

mesocrystals nanoflower

Jing Hu,^a Cheng Zou,^a Yanjie Su,^{*a} Ming Li,^b Yutong Han,^a Eric Siu-Wai Kong,^a Zhi Yang,^{*a} and Yafei Zhang^{*a}

^a Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

^b State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China.

* Corresponding author, Tel:+86-021-34205665; Fax: +86-021-34205665; Email: yanjiesu@sjtu.edu.cn, zhiyang@sjtu.edu.cn, yfzhang@sjtu.edu.cn.

S1. Gas sensor electrode and device images

Fig. S1 SEM/digital images of the sensor device: the SEM images of the interdigital electrode unit (a) before and (b) after dropping sample, (c-d) the digital images of the electrode on metal base, (e) the cross-section SEM image of the sensor device.

S2. Gas sensing testing system

Fig. S2 Schematic diagram shows the gas sensor testing system.

S3. SEM characterizations of hierarchical Cu₂O/CuO mesocrystals

Fig. S3 (a-l) SEM images of lamellar Cu_2O -oleate complex intermediate.

Sythesis condition	Temperature/°C	NaOH/M	$N_2H_4{\cdot}H_2O/M$	Cu ²⁺ /M	Time (h)
(a)	25	0.0175	0	0.001	10
(b)	25	0.0175	0.0008	0.001	10
(c)	25	0.0175	0.001	0.001	10
(d)	25	0.0175	0.002	0.001	10
(e)	25	0.0175	0.0035	0.001	10
(f)	25	0.0175	0.0075	0.001	8
(g)	25	0.0175	0.015	0.001	6
(h)	25	0	0.0035	0.001	10
(i)	25	0.0375	0.0035	0.001	10
(j)	25	0.125	0	0.001	20
(k) (1)	10 25	0.0175 0.25	0.0035	0.001 Replaced by 0.5 g Cu ₂ O	10 12

Table S1 The corresponding reaction condition for the samples in Fig. S3

S4. Morphology comparsion of comercial Cu₂O before and after reaction

Fig. S4 SEM images of comercial Cu₂O before (a) and after (b) reaction.

S5. Morphology comparsion of Cu₂O/ CuO-10 composite with different copper salts

Fig. S5 Typical TEM images with different magnification and HRTEM images of $Cu_2O/CuO-10$ composites obtained with different copper salts: (a-a2) CuSO₄, (b-b2) CuCl₂, (c-c2) Cu(NO₃)₂, (d-d2) Cu(CH₃COO)₂.

Fig. S6 (a) TGA curves of sample obtained at 3 min, 6 h, 8 h, 10 h and 20 h; (b) Complete XPS spectra of the samples at 3 min, 6 h and 10 h; (c-d) Cu 2p XPS and O1s XPS spectra of the sample at 3 min; (e-f) Cu 2p XPS and O1s XPS spectra of the sample at 10 h.

Sample	Cu 2p _{3/2}	$Cu^{+}\; 2p_{3/2}$	$Cu^{2+} \ 2p_{3/2}$	Cu 2p _{1/2}	$Cu^+ \; 2p_{1/2}$	$Cu^{2+} \ 2p_{1/2}$
Cu ₂ O/CuO-0.05	932.5 eV	932.5 eV	934.2 eV	952.3 eV	952.3 eV	954.2 eV
Cu ₂ O/CuO-10	933.0 eV	932.6 eV	933.5 eV	952.8 eV	952.6 eV	953.3 eV

Table S2 Results of curve fitting of Cu 2p XPS spectra of the samples.

Fig. S7 N_2 adsorption-desorption isotherm and pore size distribution (inset) of sample obtained at 0.5 h (a) and 10 h (b). EDX spectrum of sample obtained at 0.5 h (c) and 10 h (d).

Fig. S8 (a) Raman spectra of sample obtained at 3 min, 1 h, 6 h, 8 h, 10 h, 12 h and 20 h; (b) Digital Photo of sample obtained at 10 h; (c-d) Raman mapping scanning of samples obtained at 10 h with 278 and 615 cm⁻¹ as the characteristic peak positions.

S9. The stability of the Cu₂O/CuO-10 sensors and the sensing performance of devices with different sample concentration

Fig. S9 The response of the fresh fabricated $Cu_2O/CuO-10$ sensors exposure to 10 ppm NO₂ within 100 s (a) in 150 days and (b) with different sample concentrations.

S10. Morphology comparsion of the prepared CuO/Cu₂O-10 sensor device with different sample concentrations

Fig. S10 The cross-section SEM images of the prepared CuO/Cu₂O-10 sensor device with different sample concentrations: (a-a2) 0.1 mg/mL, (b-b2) 0.3 mg/mL, (c-c2) 0.5 mg/mL, (d-d2) 1.0 mg/mL, (e-e2) 2.0 mg/mL. The insets are corresponding top view SEM images of the substrate.

S11. Morphology comparison of the prepared CuO/Cu₂O-10 composite before and after NO₂ sensing response

Fig. S11 SEM images of the prepared CuO/Cu₂O-10 composite before and after NO₂ sensing response.