Electronic Supplementary Material (ESI)

Theoretical Investigation of Zirconium Carbide Mxenes as Prospective

High Capacity Anode Materials for Na-ion Batteries

Qiangqiang Meng,^{a,b} Jiale Ma,^a Yonghui Zhang,^a Zhen Li,^a Alice Hu,^c Ji-Jung Kai^c, and Jun Fan*^{a,d}

^a Department of Materials Science& Engineering, City University of Hong Kong, Hong Kong, China Email: junfan@cityu.edu.hk.

^b Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.

^c Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China

^d City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China

Figure S1 The band structures of the monolayer (a) Zr_2C (the inset is spin density of Zr_2C), (b) Zr_3C_2 (the inset is spin density of Zr_3C_2), (c) Zr_2CO_2 , and (d) $Zr_3C_2O_2$, respectively. The Fermi level is set to zero.

Figure S2 Charge density difference isosurfaces of single Na adsorbed on (a) Zr_2C , (b) Zr_3C_2 , (c) Zr_2CO_2 , and (d) $Zr_3C_2O_2$ monolayers. Isosurface level set to 0.007 e Å⁻³. electron-rich regions, red; and electron-deficient regions, blue.

Figure S3 Charge density difference isosurfaces of single Na adsorbed on (a) Zr_2CNa_2 , (b) $Zr_3C_2Na_2$, (c) $Zr_2CO_2Na_2$, and (d) $Zr_3C2O_2Na_2$ monolayers. Isosurface level set to 0.0035 e Å⁻³. electron-rich regions, red; and electron-deficient regions, blue.

Figure S4 Considered migration paths of Na diffusion on the Zr_2CO_2 with high Na coverage, meanwhile P1, P2, and P3 represent possible migration paths for Na atoms for (a) first and (b) second layer Na atoms, respectively; the migration paths and corresponding diffusion energy barrier profiles for (c) first and (d) second layer Na atoms, respectively.

Figure S5 The E_{ave} as a function of x in $Zr_2CO_2Na_x$ and $Zr_3C_2O_2Na_x$.

Figure S6 The OCV as a function of x in $Zr_2CO_2Na_x$ and $Zr_3C_2O_2Na_x$.

Figure S7 The difference in charge transfer of plane averaged charge for Ti₃C₂O₂Na₄, Ti₃C₂S₂Na₄, Zr₂CO₂Na₄, Zr₃C₂O₂Na₄ and Ti₃CNa₄ system, respectively.

Figure S8 The relative energy as a function of lattice constant for Na bilayer with 3×3 super-cell (the schematic representations are shown in the insets), and the dash lines represent the lattice constants of Ti₃C₂O₂ (9.15 Å), Ti₃C₂S₂ (9.45 Å), Zr₃C₂O₂ (9.93 Å), Ti₃C₄ (10.11 Å) and Na bilayer (10.71 Å), respectively.

	Zr ₂ C	Zr ₃ C ₂	Zr ₂ CO ₂	Zr ₃ C ₂ O ₂
Hexagonal lattice constant (Å)	3.32	3.34	3.31	3.31
Magnetic moment (µB)	1.90	1.73	nonmagnetic	nonmagnetic
Band gap (eV)	Metal	Metal	0.92	Metal

Table S1. Structure, magnetic moment and band gap of Zr_2C , Zr_3C_2 , Zr_2CO_2 and $Zr_3C_2O_2$.

Table S2. Lattice constant (Å), Lattice mismatch, E_{ave} of the second layer Na atoms and Charge transfer value of $Ti_3C_2O_2$, $Ti_3C_2S_2$, Zr_2CO_2 , $Zr_3C_2O_2$ and Ti_3C_4 .

	Ti ₃ C ₂ O ₂	$Ti_3C_2S_2$	Zr ₂ CO ₂	$Zr_3C_2O_2$	Ti ₃ C ₄
Lattice constant (Å)	3.05	3.15	3.31	3.31	3.37
Lattice mismatch ^a	15.5%	10.3%	7.5%	7.5%	5.9%
E _{ave} ^b	0.033	-0.01	-0.054	-0.059	-0.03
Charge transfer value ^c	-0.51	-0.52	-0.49	-0.51	-0.46

^a Lattice mismatch is calculated compared with lattice constant of Na bilayer; ^b E_{ave} of the full second layer Na atoms; ^c charge transfer value of the second layer Na atoms is calculated from Figure S7.