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SI Text

Text S1 The relationship between the band crossing point and time reversal and space
inversion symmetries.

Neglecting the weak spin-orbit coupling, the band crossing point in HAGM-42 is
fourfold degenerate, which is protected by the coexistence of time reversal and space
inversion symmetries. If the required symmetry constraints are broken, the degeneracy
will be destroyed and a band gap may open up. To verify this, we artificially break the
time reversal and space inversion symmetries of HAGM-42, and calculate the
corresponding electronic band structures. The time reversal symmetry is broken by
doping HAGM-42 with Mn atoms as a magnetic impurity (see Fig. S4a). The resulting
band structures, plotted in Fig. S4b, show that the spin up and down bands are split and
the pristine four-fold degenerate band crossing point is decomposed to two two-fold
degenerate points. In contrast, when the dopant is replaced with a nonmagnetic element
like L1, the four-fold degenerate point still remains, as shown in Fig. S4c. To break the
space inversion symmetry, we make a small movement for some atoms in HAGM-42,
as shown in Fig. S5a, and calculate its electronic band structure. The results in Fig. S5b

clearly show that a gap is opened up because of the breakage of space inversion



symmetry.

SI Table
Table S1 Lattice parameters (a, b and ¢, in A) for HZGM-42, diamond, and graphite

calculated using different exchange-correction functionals.

Methods HZGM-42 Diamond Graphite
PBE a 16.82 4.28 2.46
b 16.82 4.28 2.46
c 2.47 4.28 8.35
PBE-D2 a 16.79 4.27 2.46
b 16.79 4.27 2.46
c 2.46 4.27 6.41
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Fig. S1 Calculated total energy versus volume per atom for HZGM-42, graphite,
diamond, T6, bet-Cy, IGN, beo-Cig, and Hex-Cs.
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Fig. S2 Total potential energy fluctuation during AIMD simulation at 1200 K of
HZGM-42. The inset shows the atomic configurations (1x1x4 supercell for HZGM-42)
at the end of AIMD simulations at 1200 K.
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Fig. S3 (a) Band structure of HAGM-42 along the high symmetric path I'/2—A. (b)

and (c) Charge densities of P1 and P2 states, respectively. The isosurface value is 0.005

e/A3.
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Fig. S4 (a) Structure of Mn-doped HAGM-42. (b) and (c) Electronic band structures of
Mn- and Li-doped HAGM-42, respectively.
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Fig. S5 (a) Illustration of atomic movement in HAGM-42, and (b) the resulting

electronic band structure.
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Fig. S6 Electronic band structure of HZGM-42 calculated by using the HSE06

functional.
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Fig. S7 (a) Top and (b) side views of the optimized structure of HZGM-42 with a mono-

vacancy at the sp® carbon site. A 1 x 1 x 4 supercell is used.
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Fig. S8 (a) Three symmetry-inequivalent migration paths of Li diffusion considered
along the z-direction around the mono-vacancy at the sp3 carbon site. (b)-(d) Diffusion

energy barrier profiles of the three diffusion paths displayed in (a).
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Fig. S9 (a) Top and (b) side views of the full Li-intercalated configuration of HZGM-
42. The green, light blue and purple spheres represent lithium ion, sp?-, and sp?-

hybridized carbon atoms, respectively.
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Fig. S10 Total potential energy fluctuation during AIMD simulation at 1200 K of
HZGM-66. The inset shows the atomic configurations (1x1x4 supercell for HZGM-66)
at the end of AIMD simulations at 1200 K.
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Fig. S11 Two elemental building motifs of HZGM phases, i.e. (a) the graphene
nanoribbons with tunable width, and (b) the linkers composed of sp3-hybridized carbon
atoms. N (1+2n) donates the width of the zigzag graphene nanoribbons. (¢) Top and
side views of HZGM-66 with N = 3. (d) Phonon band structure, (e) electronic band
structure calculated by DFT-GGA/PBE (blue dashed lines) and the HSE06 hybrid
functional (red solid lines), and (f) the orientation-dependent stress-strain relationships

of HZGM-66.
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Fig. S12 (a) Top and side views of the possible Li absorption sites for HZGM-66. (b)
Binding energies of the four configurations in (a). Configuration Liy; changes to Liy
after full geometry optimization. (c¢) Considered migration paths of Li diffusion and the

corresponding diffusion energy barrier profiles.
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Fig. S13 (a) Top and (b) side views of the full Li-intercalated configuration of HZGM-
66.



