Supporting Information

An anti-overturn Janus sponge with excellent floating stability for simultaneous pollutant remediation and oil/water separation

Yo Seph Lee,^a Byung Kwon Kaang,^a Nara Han,^a Ha-Jin Lee,^b and Won San Choi*,^a

Fig. S1 WCA data of selected hydrophobic part of the AJS as a function of increasing ODA coating cycles.

Fig. S2 (a) Oil absorption capacity of the hydrophobic MF sponge (MF sponge/PDMS) for various oils. Inset shows the WCA of the MF sponge/PDMS. (b) A SEM image of the MF sponge/PDMS.

Fig. S3 Time-dependent UV-vis absorption spectra of MB after treatment with the hydrophilic part of the AJS $(1^{st} - 6^{th})$.

Fig. S4 Time-dependent UV-vis absorption spectra of MB after treatment with the hydrophilic part of the AJS $(7^{th} - 12^{th})$.

Fig. S5 Time-dependent UV-vis absorption spectra of MO after treatment with the hydrophilic part of the AJS $(1^{st} - 4^{th})$.

Fig. S6 UV-vis absorption spectra of MB solution before and after treatment with the hydrophilic part of the (a) cube typed and (b) branch typed AJSs.

Fig. S7 The residual water (colored blue with MB) contents in the hexane, diesel, silicone oil, and soybean oil separated by the pump.