Supporting Information

An Antiferromagnetic Metalloring Pyrazolate (Pz) Framework with $[Cu_{12}(\mu_2-OH)_{12}(Pz)_{12}]$ Nodes for Separation of C_2H_2/CH_4 Mixture

Ziyin Li,^a Yingxiang Ye,^a Zizhu Yao,^a Junzhi Guo,^a Quanjie Lin,^a Jindan, Zhang,^a Zhangjing Zhang,^{*ab} Fangfang Wei^{*a} and Shengchang Xiang^{*ab}

^aFujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, PR China ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China

E-mail: zzhang@fjnu.edu.cn; wfanfan@fjnu.edu.cn; scxiang@fjnu.edu.cn.

Content

Gas Sorption	Measuremer	nts				S3
Virial						Equation
Analysis					S3	
Enthalpies of	Adsorption.					S3
Prediction	of	the	Gas	Adsorption	Selectivit	y by
IAST			S4			
Scheme S1 I	llustration of	f a lab-scale	fix-bed react	tor		
Scheme S2 S	Synthesis of 4	4-amine-3,5	-dimethyl-1H	I-pyrazole and H ₂ N	DI	S5
Synthesis	of 4-amine-	3,5-dimethy	/l-1H-pyrazo	le		S6
Synthesis	of H ₂ NDI					
Figure S1 Th	$e [Cu_{12}(\mu_2 - C)]$	$(Pz)_{12}(Pz)_{12}$	metalloring	SBU		S7
Figure S2 Se	lf-interlock	of Cages I				S7
Figure S3 Th	ne compariso	n of MROF	F -12 and MR	OF-1		S8
Figure S4 Th	ne 12-connec	ted topolog	y for MROF	-12		S9
Figure S5 Th	ne compariso	n of MROI	F-12 and H_2N	$Ja_4[Cu_{12}(OH)_6(pz)$	$BTC)_6] \cdot 23H_2C$)S9
Figure S6 IR	spectrum of	MROF-12	and H ₂ NDI.			S10
Figure S7 PX	KRD patterns	s for MROF	F-12			S10
Figure S8 TC	GA curves fo	or MROF-12	2			S11
Figure S9 Th	ne experimer	tal and simu	ulated pore-s	ize distribution for N	MROF-12a	S11
Figure S10 C	Bas sorption	isotherms of	f MROF-12a	1		S12
Figure S11 T	The virial gra	phs for adso	orption of CH	I4 on MROF-12a		S12
Figure S12 T	The virial gra	phs for adso	orption of C_2	H ₆ on MROF-12a		S13
Figure S13 T	The virial gra	phs for adso	orption of C_2	H ₄ on MROF-12a		S13
Figure S14 T	The virial gra	phs for adso	orption of C_2	H ₂ on MROF-12a		S13
Figure S15 C	Comparison o	of the enthal	pies for gas a	adsorption from two	methods	S14
Figure S16 S	Single-site La	ngmuir-Fre	undlich equa	tions fit for gas adso	orption	S15
Figure S17 L	AST selectiv	vity for equin	molar C ₂ s/CI	H ₄ mixtures in MRC)F-12a	S15
Figure S18 T	The χ_m^{-1} verse	us T plot of	MROF-12			S16
Figure S19 C	Column breal	kthrough exp	periment for	a CO ₂ /CH ₄		S16
Figure S20 C	C ₂ H ₂ /CH ₄ dis	tillation sys	tem simulati	on by ASPEN PLUS	S	S17
Table S1 Con	mparison mu	ltifunction	of MROF-12	2 and the reported M	IROFs	S18
Table S2 Cry	stallographi	c Data and S	Structural Re	finement Summary.		S19
Table S3 Sel	ected bond l	engths [Å] f	for MROF-1	2		S20
Table S4 Sel	ected bond a	ingles [°] for	r MROF-12.			S20
Table S5	The	representat	tive 3D	MOFs that for	orm by 1	2-connected
cluster		S21				
Table S6 Vir	ial graph and	alyses data f	for MROF-1	2a		

Table S7 Comparison of several po	prous materials for the practica	al separation of C_2H_2/CH_4S23
References		

Gas Sorption Measurements. After the bulk of the solvent was decanted, the freshly prepared sample of **MROF-12** (~0.15 g) was soaked in ~10 mL acetone for 1 h, and then the solvent was decanted. Following the procedure of acetone soaking and decanting for ten times, the solvent-exchange samples were activated by vacuum at 60 °C for 24 hours till the pressure of 5 μ mHg. N₂, CO₂, methane, ethylene, ethane and acetylene adsorption isotherms were measured on Micromeritics ASAP 2020 HD88 surface are analyzer for the **MROF-12a**. The sorption measurement was maintained at 77 K with liquid nitrogen and at 273 K with an ice-water bath (slush), respectively.

Virial Equation Analysis. The virial equation can be written¹ as follows:

$$\ln(n / p) = A_0 + A_1 n + A_2 n^2 + \dots$$
 (1)

where *n* is the amount adsorbed (mol g^{-1}) at pressure *p* (Pa). At a low surface coverage, the A_2 and higher terms can be neglected and the equation becomes

$$\ln(n/p) = A_0 + A_1 n$$
 (2)

A linear graph of $\ln(n/p)$ versus *n* was obtained at low surface coverage and this is consistent with neglecting the higher terms in eqn (2). A_0 is related to the adsorbate-adsorbent interactions, Whereas A_1 describes the adsorbate-adsorbate interactions. The virial parameters are given in **Table S4**, Supporting Information.

Enthalpies of Adsorption. Zero surface coverage. The isosteric enthalpies of adsorption at zero surface coverage (Q_{st} , n=0) are a fundamental measure of adsorbate-adsorbent interactions and these values were calculated from the A_0 values obtained by extrapolation of the virial graph to zero surface coverage.

van't Hoff isochore. The isosteric enthalpies of adsorption as a function of surface coverage were calculated from the isotherms using the van't Hoff isochore, which is given by the equation

$$\ln(p) = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \tag{3}$$

A graph of $\ln P$ versus 1/T at a constant amount adsorbed (*n*) allows the isosteric enthalpy and entropy of adsorption to be determined. The pressure values for a specific amount adsorbed were calculated from the adsorption isotherms by: (1) assuming a linear relationship between the adjacent isotherm points starting from the first isotherm point; and (2) using the virial equation at low surface coverage. The agreements between the two methods for **MROF-12a** are shown in Figure S14. **Prediction of the Gas Adsorption Selectivity by IAST.** The ideal adsorption solution theory (IAST)² was used to predict the binary mixture adsorption from the experimental pure gas isotherms. To perform the integrations required by IAST, single-component isotherms should be fitted by the correct model. In practice, several methods are available; for this set of data we found that the single-site Langmuir-Freundlich equation was successful in fitting the results.

$$N = N^{\max} \times \frac{bp^{1/n}}{1 + bp^{1/n}}$$
(4)

where P is the pressure of the bulk gas in equilibrium with the adsorbed phase (kPa), N is the amount adsorbed per mass of adsorbent (mmol g⁻¹), N^{max} is the saturation capacities of site 1 (mmol g⁻¹), b is the affinity coefficients of site 1 (1/kPa) and n represents the deviations from an ideal homogeneous surface. The fitted parameters were then used to predict multi-component adsorption with IAST. The adsorption selectivities based on IAST for mixed C₂H₂/CH₄, C₂H₄/CH₄, and C₂H₆/CH₄ are defined by the following equation:

$$S_{A/B} = (x_A/y_A)/(x_B/y_B)$$
 (5)

where x_i and y_i are the mole fractions of component i (i = A, B) in the adsorbed and bulk phases, respectively.

Scheme S1. Illustration of a lab-scale fix-bed reactor.

Scheme S2. Synthesis of 4-amine-3,5-dimethyl-1H-pyrazole and H₂NDI.

Synthesis of 4-amine-3,5-dimethyl-1H-pyrazole.

This was prepared as described previously.³ The acetylacetone (20 g, 0.2 mol) was added to the solution of concentrated HCl (18 mL, 0.6 mol) and deionized water (100 mL, 5.55 mol), then stir in the ice water bath (8 °C). Sodium nitrite solution (14 g, 0.2 mol) was drop into the above solution, standing for 20 min. Opening electric stirring, 85% hydrazine hydrate (12 g, 0.2 mol) was added to reaction which will form a large number of blue recipitate. Continue adding ethanol (100 mL, 2.6 mol) till the blue precipitate were dissolved completely, then adjusted the pH to neutral. Hydrazine hydrate (13.5 g, 0.22 mol) was added dropwise to the above solution, maintaining the temperature at 80 °C for 5 h until the solution of reaction turned golden yellow. Finally, the solvent was evaporated and the desired product was washed with cold ethanol for three times, then collected by filtration and dried in 60 °C to afford white powders. (Yield 50.6% based on acetylacetone).

Synthesis of H₂NDI.

H₂NDI were prepared as described previously with some modification.¹ A dry 100 mL Schlenk flask was charged with 1,4,5,8-naphthalenetetra carboxylic dianhydride (0.86 g, 3.2 mmol), 3,5dimethylpyrazole (0.75 g, 6.8 mmol), and anhydrous DMF (50 mL) under a nitrogen atmosphere. The reaction mixture was heated at 150 °C with rapid stirring for 12 hours. The flask was cooled to room temperature and the dark brown DMF solution was poured into stirring diethyl ether (150 mL). The precipitated yellow solid was separated by filtration and recrystallized from DMF/diethyl ether/H₂O (10 mL: 15 mL: 5mL). The product was filtered and dried *in vacuo* at 70 °C to afford 1.2 g (Yield 82% based on 1,4,5,8-naphthalenetetracarboxylicdianhydride) of light yellow crystals.

Figure S1. (a) The coordination environments of the Cu²⁺ atoms (Symmetry codes: $^{1} = -1+y-x$, -1-x, 1+z; $^{2} = -y$, +x-y, +z; $^{3} = -y$, 1+x-y, 1+z). (b) The [Cu₁₂(μ_{2} -OH)₁₂(Pz)₁₂] metalloring SBU with a outer diameter of 18.412 Å.

Figure S2. Self-interlock of Cages I viewed from the *c*-axis.

Figure S3. The comparison of the topological analysis for **MROF-12** and MROF-1⁴. The stacking mode of 3D structure for them are different, considering the 12-connected clusters in them as hexagonal antiprism ($[Cu_{12}(\mu_2-OH)_{12}(Pz)_{12}]$ SBU) and hexagonal prism ($[In_6(thb)_6]^{6+}$ metalloring SBU) respectively, which mainly due to the torsional difference between the 12-connected polyhedral prisms (green ellipse) in the two cluster nodes.

Figure S4. Schematic representation of the 12-connected topology along c and b axis for MROF-12.

Figure S5. The comparison of the $[Cu_{12}(\mu_2-OH)_{12}(Pz)_{12}]$ metalloring clusters (a), the connection of metalloring clusters (b) and 3D frameworks (c) for MROF-12 and $H_2Na_4[Cu_{12}(OH)_6(pz)_6(BTC)_6] \cdot 23H_2O^5$.

Figure S6. IR spectrum of MROF-12 and H₂NDI.

Figure S7. Powder X-ray diffraction (PXRD) patterns for MROF-12.

Figure S8. TGA curves for MROF-12.

Figure S9. The pore-size distribution for Experimental and Simulated (simulated using the Zeo++ software package⁶).

Figure S10. C₂H₂, CO₂, C₂H₄, C₂H₆, CH₄, N₂ sorption isotherms of **MROF-12a** at 296 K (a) and 273 K (b).

Figure S11. The virial graphs for adsorption of CH₄ on **MROF-12a** at 296 K (left) and 273 K (right).

Figure S12. The virial graphs for adsorption of C_2H_6 on **MROF-12a** at 296 K (left) and 273 K (right).

Figure S13. The virial graphs for adsorption of C_2H_4 on **MROF-12a** at 296 K (left) and 273 K (right).

Figure S14. The virial graphs for adsorption of C_2H_2 on **MROF-12a** at 296 K (left) and 273 K (right).

Figure S15. Comparison of the enthalpies for gas adsorption of CH_4 , C_2H_6 , C_2H_4 , and C_2H_2 on **MROF-12a** from two methods: virial equation (solid) and linear extrapolation (open).

Figure S16. The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CH_4 , C_2H_2 , C_2H_4 and C_2H_6 on **MROF-12a** at 273 K.

Figure S17. Comparison of the adsorption selectivity for equimolar C_2H_2/CH_4 , C_2H_6/CH_4 and C_2H_4/CH_4 mixtures by IAST at 296 K (a) and 273 K (b) in **MROF-12a**.

Figure S18. The χ_m^{-1} versus T plot of MROF-12.

Figure S19. Column breakthrough experiment for a $CO_2/CH_4 = 50/50$ gas mixture was carried out on **MROF-12a** at 296 K and 1 bar.

The dynamic column breakthrough experiment is conducted by flowing the CO_2/CH_4 (50:50, v/v) mixture over a packed bed of the **MROF-12a** solid with a flow rate of 4.1 mL min⁻¹. From the breakthrough curve, it is can be known that the separation of the CO_2/CH_4 mixture can be efficiently achieved and CO_2 was not detected until a breakthrough time of 552 s. The dynamic CO_2 adsorption capacity for **MROF-12a** is 0.52 mmol g⁻¹, based on which, the separation factor was 1.50, and suggesting **MROF-12a** is promising for the separation of CO_2/CH_4 mixture.

A distillation system was simulated using the process simulation platform, Aspen Plus, for the purpose of energy efficiency. A C_2H_2/CH_4 gas mixture in equimolar ratio was fed at room temperature and 1 atm with the feed ratio of 100 kg/h. To locate the steady states, the effective liquid holdup and boil-up ratio are chosen as the continuation parameters. It is of interest to note that there is a sudden increase in CH₄ purity (99.99%) in vapor distillate was withdrawn at a rate of 8.5 kg/h which assures by the constant liquid holdup from the reboiler temperature of -156 °C. Based on these experimental parameters, the energy consumption for CH₄ is 89792.8 kJ/h or 169.0 kJ/mol.

However, the C_2H_2 purity (99.9%) increased in bottoms and obtained at a rate of 5.828 kg/h when the reboiler temperature rises to -97 °C. At this point, the energy consumption for C_2H_2 is 24696.1 kJ/h or 110.2 kJ/mol.

Compounds	ligands	Cluster type	Diameter (Å) ^a	Heat Stability VXRD/TG (°C)	Chemical Stability (pH)	BET/Langmuir (m ² g ⁻¹)	Application	Ref.
MROF-12	H ₂ NDI	Cu ₁₂ (OH) ₁₂ (pz) ₁₂	12.202	400/481	2~13	460.7/571.9	Separation of C ₂ H ₂ /CH ₄ and antiferromagnetism	This work
$Be_{12}(OH)_{12}(BTB)_4$	H ₃ BTB	$Be_{12}(OH)_{12}$	8.994	-/510	-	4030/4400	Hydrogen storage	8
MOF-520	H ₃ BTB	Al ₈ (OH) ₈ (HCOO) ₄	8.670	-/502	-	2310/-	Coordinative alignment of molecules	9
CAU-1	NH ₂ -H ₂ BDC	Al ₈ (OH) ₄ (OCH ₃) ₈	8.114	310/360	-	-/1700	High porosity and thermal stability	10
MIL-125	H ₂ BDC	Ti ₈ (O) ₈ (OH) ₄	8.247	360/350	-	1550/-	Reversible photochromic behavior	11
MROF-1	H ₂ thb, H ₂ pbdc	In ₆ (thb) ₆	20.990	160/300	-	80.8/129.0	Proton conductivity	5
$H_2Na_4[Cu_{12}(OH)_6(pz)_6(BTC)_6]$	H ₃ BTC	Cu ₁₂ (OH) ₆ (pz) ₆	12.185	250/220	-	813/-	Ion-exchange	4
CAU-3-BDC	H ₂ BDC	Al ₁₂ (OCH ₃) ₂₄	10.770	-/200	-	1250/1520		
CAU-3-BDC-NH ₂	NH ₂ -H ₂ BDC	Al ₁₂ (OCH ₃) ₂₄	10.449	-/180	-	1550/1920	Sorption properties	12
CAU-3-NDC	H ₂ NDC	Al ₁₂ (OCH ₃) ₂₄	10.882	-/180	-	2320/2750		
MIL-125-NH ₂	NH ₂ -BDC	Ti ₈ (O) ₈ (OH) ₄	8.269	-	-	775/-	Photo-catalytic properties	13

Table S1. The diameter, stability, BET/Langmuir surface area and application for MROF-12 and the reported MROFs.

On the whole, the difference not only present in the structures of the three MOFs (**MROF-12**, MROF-1 and $H_2Na_4[Cu_{12}(OH)_6(pz)_6(BTC)_6]\cdot 23H_2O$), but also in the performance for them. The stability of **MROF-12** is generally higher than that of the other two MOFs. In addition, unlike MROF-1 and $H_2Na_4[Cu_{12}(OH)_6(pz)_6(BTC)_6]\cdot 23H_2O$, multifunctional **MROF-12** adopts the unique functionalities of the metalloring clusters which endow its material with antiferromagnetism, and simultaneously inherits the porous properties of MOFs and can be used to the separation of C_2H_2/CH_4 mixture gases.

	MROF-12
CCDC	1835951
empirical formula	$C_{48}H_{36}Cu_4N_{12}O_{12}$
formula weight	1227.05
Temperature	100 K
Radiation	$CuK\alpha$ ($\lambda = 1.54184$ Å)
crystal system	trigonal
space group	Р3
Dimensions	3D
a(Å)	26.0992(4)
<i>b</i> (Å)	26.0992(4)
<i>c</i> (Å)	9.2584(2)
α	90°
β	90°
γ	120°
Volume (Å ³)	5461.6(2)
Ζ	3
Density (calcd)	1.119 g/cm ³
Absorption	1. 755 mm ⁻¹
Goodness-of-fit on F ²	1.047
<i>F</i> (000)	1860.0
<i>R</i> 1, <i>wR</i> 2 [<i>I</i> >2 σ (<i>I</i>)] ^(a)	0.0421, 0.0758
R1, $wR2$ (all data) ^(a)	0.0618, 0.0795

Table S2. Crystallographic Data and Structural Refinement Summary.

(a)
$$R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|, wR_2 = \left[\sum w(|F_0|^2 - |F_c|^2)^2 / \sum w(F_0^2)^2\right]^{1/2}$$

Atom-Atom	bond lengths [Å]	Atom-Atom	bond lengths [Å]
Cu1-N1	1.954(6)	Cu3-N4	1.955(6)
Cu1-O1	1.950(7)	Cu3-N5	1.961(6)
Cu1-N9 ¹	1.968(6)	Cu3-O2	1.974(6)
Cu1-O4 ²	1.947(7)	Cu3-O3	1.964(7)
Cu2-N3	1.961(6)	Cu4-N6	1.970(6)
Cu2-N2	1.967(6)	Cu4-N10 ³	1.979(6)
Cu2-O2	1.954(7)	Cu4-O4	1.962(7)
Cu2-O1	1.970(7)	Cu4-O3	1.961(7)

 Table S3. Selected bond lengths [Å] for MROF-12.

¹-1+y-x, -1-x, 1+z;²-y, +x-y, +z; ³-y, 1+x-y, 1+z.

 Table S4. Selected bond angles [°] for MROF-12.

Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
N1-Cu1-N9 ¹	100.3(2)	N2-Cu2-O1	84.8(3)	N5-Cu3-O3	86.1(3)
O1-Cu1-N1	85.6(3)	O2-Cu2-N3	85.2(3)	O3-Cu3-O2	88.9(3)
O1-Cu1-N9 ¹	171.4(3)	O2-Cu2-N2	171.9(3)	N6-Cu4-N10 ³	99.4(2)
O4 ² -Cu1-N1	170.8(3)	O2-Cu2-O1	91.0(3)	O4-Cu4-N6	171.5(3)
O4 ² -Cu1-O1	89.0(3)	N4-Cu3-N5	100.2(2)	O4-Cu4-N10 ³	85.1(3)
O4 ² -Cu1-N9 ¹	85.9(3)	N4-Cu3-O2	85.7(3)	O3-Cu4-N6	85.4(3)
N3-Cu2-N2	99.9(2)	N4-Cu3-O3	171.0(3)	O3-Cu4-N10 ³	171.6(3)
N3-Cu2-O1	171.6(3)	N5-Cu3-O2	171.2(3)	O3-Cu4-O4	91.1(3)

¹-1+y-x, -1-x, 1+z; ²-y, +x-y, +z; ³-y, 1+x-y, 1+z.

Compounds	Nodes		Topology / Schläfli symbol	Ref.
MROF-12	$[Cu_{12}(\mu_2\text{-}OH)_{12}(Pz)_{12}]$	$\left \right\rangle$	-/4 ⁶⁰ .6 ⁶	This work
MROF-1	$[In_6(thb)_6(CO_2)_{12}]^{6-1}$		-/4 ⁶⁰ .6 ⁶	9
Ce-UiO-66-BPyDC	$[Ce_6(\mu_3-O)_4(\mu_3-OH)_4(CO_2)_{12}]$		fcu/-	14
RE-fcu-MOF (RE = Y, Tb)	$[RE_6(\mu_3\text{-}OH)_8(CO_2)_{12}]$		fcu/-	15
UiO-66	[Zr ₆ O ₄ (OH) ₄ (CO ₂) ₁₂]		fcu/-	16
CAU-1	${Al_8(OH)_4(OCH_3)_8}^{12+}$		-/-	6
CAU-3	[Al ₂ (OCH ₃) ₄ (CO ₂) ₂]		fcu/-	10
$[Zn_5(\mu_3-OH)_2(bdc)_2(bimf)_2]\cdot 4H_2O$	$[Zn_5(\mu_3\text{-}OH)_2(CO_2)_7(C_3N_2)_4]$	×	fcu/-	17
RE-BDC/NDC (RE = Y, Tb, Er)	[RE ₃ (µ ₃ -OH)(COO) ₆]	e 1	<i>hcp</i> /3 ²⁴ ·43 ³ ·5 ⁹	18
[Cu ₁₂ Br ₂ (CN) _{6/2} (SCH ₃) ₆][Cu(S CH ₃) ₂]	[Cu ₁₂ (SCH ₃) ₆] ⁶⁺	$\langle \rangle$	pseudo-pcu/-	19
$[Co_{12}(L)_6(\mu_3-PO_4)_4(\mu_3-F)_4(\mu-H_2O)_6][NO_3]_2$	$[Co_{12}(\mu-RCO_2)_{12}(\mu_3-PO_4)_4(\mu_3-F)_4(\mu-H_2O)_6]^{4-1}$		fcu/-	20

Table S5. The representative 3D MOFs that form by 12-connected cluster and linear linker.

Table S6. Virial graph analyses data for **MROF-12a** and its C_2/C_1 separation selectivities ($C_2 = C_2H_2$, C_2H_4 , C_2H_6 ; $C_1 = CH_4$).

Material	adsorbate	<i>T</i> /K	A _θ / ln(mol g ⁻¹ Pa ⁻¹)	<i>A</i> 1/ g mol ⁻¹	R ²	K _H / mol g ⁻¹ Pa ⁻¹	S i/ Сн4 ^а	ΔH/kJ mol ⁻¹	
	СЦ	296	-15.522	-597.716	0.998	1.815×10-7	23.4	17.0	
MROF-12a	$C_2 \Pi_2$	273	-14.892	-618.408	0.996	3.408×10-7	30.7	17.0	
	C_2H_4	296	-15.703	-753.934	0.997	1.515×10-7	19.6	15 /	
		273	-15.147	-789.422	0.996	2.641×10-7	23.8	13.4	
	C ₂ H ₆	296	-15.088	-1198.389	0.987	2.801×10-7	36.2	174	
		273	-14.460	-1229.855	0.986	5.249×10-7	47.2	1/.4	
	СЦ	296	-18.678	-386.881	0.994	7.731×10-9	1.0	10.2	
		273	-18.315	-426.154	0.996	1.111×10-8	1.0	10.5	

^{*a*}The Henry's law selectivity for gas component *i* over CH₄ at the speculated temperature is calculated based on the equation $S_{ij} = K_{H(i)}/K_{H(j)}$.

Table S7. Comparison of several representative porous materials for the practical separation of C_2H_2/CH_4 .

Materials	Gas mixtures		Total		C ₂ H ₂	Q _{st} (kJ/mol)		
		e (K) flow (mL factor min ⁻¹)	Separation factor	adsorption capacity (mmol/g)	C ₂ H ₂	CH ₄	Ref.	
MROF-12a	C ₂ H ₂ /CH ₄ /He	298	6.5	6.82	0.29	17.8	10.3	This
WIRO1-12a	(5/5/90)	290			0.27		10.5	work
s-PMO-2	$C_2H_2/CH_4/He$	298	4	5.2	0.13	25.0	12.3	21
	(5/5/90)							
ZJNU-59	C_2H_2/CH_4	298	5	26.2	42	31.8	-	22
	(50/50)				4.2			
	C_2H_2/CH_4	298	5	30.5	6 57	35.4	16.8	23
ZJ110-54	(50/50)		5	57.5	0.57			23
SNINILI 05	C_2H_2/CH_4	273	6	-	2.69	47.2	-	24
SININO-95	(50/50)							
NKMOF-1-Ni	C_2H_2/CH_4	208	1.6	6.6		(0.2	21.7	25
	(50/50)	298	1.0	0.0	-	00.5	51.7	
Industrial	C_2H_2/CH_4	206				110.2	169.0	Figure
technologies	(50/50)	290	-	-	-			S20

References

- 1 I. P. O'koye, M. Benham and K. M. Thomas, *Langmuir*, 1997, **13**, 4054–4059.
- 2 A. L. Myers and J. M. Prausnitz, *AIChE J.*, 1965, **11**, 121.
- 3 (a) Z. Y. Li, Z. J. Zhang, Y. X. Ye, K. C. Cai, F. F. Du, H. Zeng, J. Tao, Q. J. Lin, Y. Zheng and S. C. Xiang, *J. Mater. Chem. A*, 2017, **5**, 7816–7824; (b) J. G. Li, J. Gao, H. Li, X. F. Yang and Y. Liu, *Anal. Methods*, 2014, **6**, 4305–4311.
- 4 Y. H. Han, Y. X. Ye, C. Tian, Z. J. Zhang, S. W. Du and S. C. Xiang, *J. Mater. Chem. A*, 2016, **4**, 18742–18746.
- 5 H. Zhang, Y. Lu, Z. Zhang, H. Fu, Y. Li, D. Volkmer, D. Denysenko and E. Wang, *Chem. Commun.*, 2012, **48**, 7295–7297.
- 6 T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza and M. Haranczyk, *Microporous Mesoporous Mater.*, 2012, **149**, 134–141.
- 7 (a) G. Z. Zuo, R. Wang, R. Field and A. G. Fane, *Desalination*, 2011, 283, 237–244; (b) B. Yang, J. Wu, G. S. Zhao, H. J. Wang and S. Q. Lu, *Chinese J. Chem. Eng.*, 2006, 14, 301–308.
- 8 K. Sumida, M. R. Hill, S. Horike, A. Dailly and J. R. Long, *J. Am. Chem. Soc.*, 2009, **131**, 15120–15121.
- 9 S. Lee, E. A. Kapustin and O. M. Yaghi, *Science*, **2016**, *353*, 808–811.
- 10 T. Ahnfeldt, N. Guillou, D. Gunzelmann, I. Margiolaki, T. Loiseau, G. Férey, J. Senker and N. Stock, *Angew. Chem.*, 2009, **121**, 5265–5268.
- 11 M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez and G. Férey J. Am. Chem. Soc., 2009, **131**, 10857–10859.
- 12 H. Reinsch, M. Feyand, T. Ahnfeldt and N. Stock, Dalton Trans., 2012, 41, 4164–4171.
- 13 A. P. Smalley, D. G. Reid, J. C. Tan and G. O. Lloy, *CrystEngComm*, 2013, 15, 9368–9371.
- 14 M. Lammert, C. Glißmann, H. Reinsch and N. Stock, Cryst. Growth Des., 2017, 17, 1125–1131.
- 15 A. H. Assen, Y. Belmabkhout, K. Adil, P. M. Bhatt, D.-X. Xue, H. Jiang and M. Eddaoudi, *Angew. Chem. Int. Ed.*, 2015, **54**, 14353–14358.
- 16 J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850–13851.
- 17 H. Guo, X. Guo, H. Zou, Y. Qi and R. Chen, CrystEngComm, 2014, 16, 2176-2187.
- 18 N. Wei, R.-X. Zuo, Y.-Y. Zhang, Z.-B. Han and X.-J. Gu, Chem. Commun., 2017, 53, 3224–3227.
- 19 X. Liu and K.-L. Huang, Inorg. Chem. 2009, 48, 8653-8655.
- 20 S. A. K. Robinson, M.-V. L. Mempin, A. J. Cairns and K. T. Holman, J. Am. Chem. Soc., 2011, 133, 1634–1637.
- 21 L. Wu, Z. Yu, Y. X. Ye, Y. Yang, H. Zeng, J. Huang, Y. Huang, Z. J. Zhang and S. C. Xiang, J. Solid State Chem., 2018, 264, 113–118.
- 22 Y. Wang, M. He, X. Gao, S. Li, S. Xiong, R. Krishna and Y. B. He, ACS Appl. Mater. Interfaces, 2018, 10, 20559–2056.
- 23 J. Jiao, L. Dou, H. Liu, F. Chen, D. Bai, Y. Feng, S. S. Xiong, D. L. Chen and Y. He, *Dalton Trans.*, 2016, **45**, 13373–13382.
- 24 H. Li, S. Li, X. Y. Hou, Y. C. Jiang, M. Hu and Q.-G. Zhai, *Dalton Trans.*, 2018, 47, 9310–9316.
- 25 Y.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko and Z. J. Zhang, *Angew. Chem.*, *Int. Ed.*, 2018, **57**, 10971–10975.