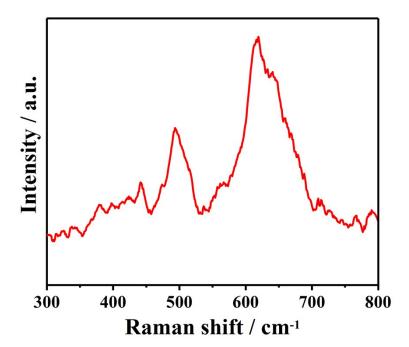
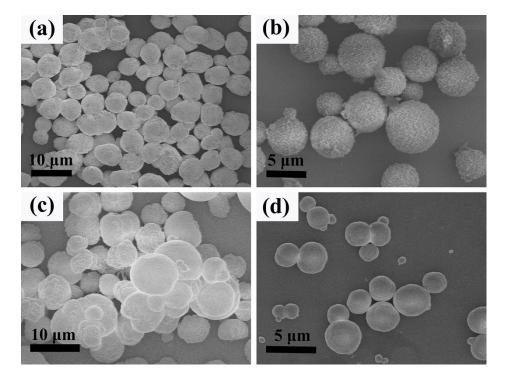
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic supplementary information for


Hierarchical waxberry-like $LiNi_{0.5}Mn_{1.5}O_4$ as an advanced cathode material for lithium-ion batteries with superior rate capability and long-term cyclability†

Weiwei Sun,^{a,*} Yujie Li,^a Yumin Liu,^b Qingpeng Guo,^a Shiqiang Luo,^a Jinge Yang,^a Chunman Zheng^a and Kai Xie^a

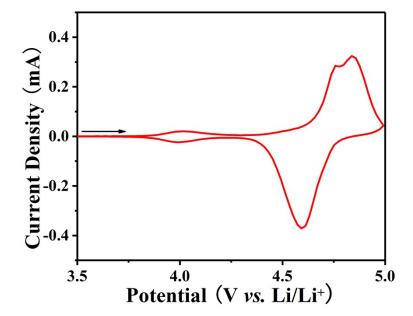
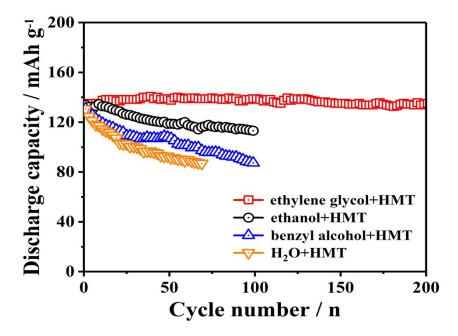
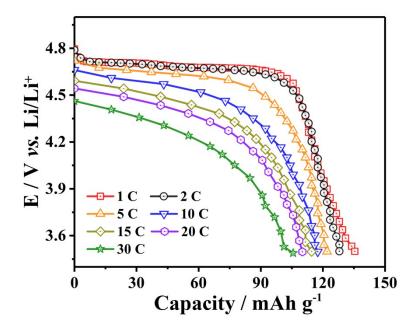

^a College of Aerospace Science and Engineering, National University of Defence Technology, Changsha 410073, Hunan, China.

^b Institute for Interdisciplinary Research (IIR), Jianghan University, Wuhan 430056, Hubei, China.

Figure S1 Raman spectra of the HWL-LNMO.

Figure S2 SEM images of carbonate precursors obtained by solvothermal reaction using (a) H_2O+HMT , (b) ethanol+HMT, (c) benzyl alcohol+HMT, (d) ethylene glycol+urea.

Figure S3 Cyclic voltammogram of the HWL-LNMO electrode at a scan speed of 0.05 mV s⁻¹.

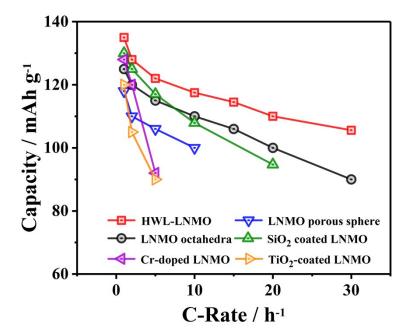

Figure S4 Cycling performance of LNMO prepared from different reaction solvents.

Figure S5 Discharge curves of HWL-LNMO at different discharge rates of 1 C to 30 C.

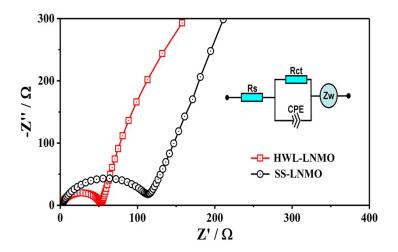

Figure S6 Comparison of the rate capabilities of HWL-LNMO, LNMO porous sphere,²⁷ LNMO octahedra,³⁴ SiO₂-coated LNMO,⁴³ Cr-doped LNMO⁴⁴ and TiO₂-coated LNMO¹⁷.

Table S7 Comparison of the high-rate cycle performances of our HWL-LNMO with other reported $LiNi_{0.5}Mn_{1.5}O_4$.

Cathode materials	Strategies	Cycling stability
LNMO porous nanorods	morphology-inheritance route ¹⁸	91% after 500 cycles at 5 C
LNMO with high surface orientation	metal-organic framework method ¹⁵	78.7% after 500 cycles at 10 C
LNMO particles	hydrothermal method ²⁰	88.1% after 1000 cycles at 5 C
LNMO porous ellipsoids	self-template method ²⁶	88.4% after 400 cycles at 5 C
Hierarchical LNMO	controlling microstructures of precursors ³⁰	91.4% after 1000 cycles at 5 C
LNMO nanoplates	hydrothermal method ³⁶	84.7% after 500 cycles at 40 C
Ours: HWL-LNMO	hydrothermal method	84% after 1200 cycles at 30 C

Figure S8 Electrochemical impedance spectroscopy (EIS) of the HWL-LNMO and SS-LNMO electrodes.

