Electronic Supplementary Material (ESI)

Mo₂C-induced solid-phase synthesis of ultrathin MoS₂

nanosheet arrays on bagasse-derived porous carbon

frameworks for high-energy hybrid sodium-ion capacitors

Yuzhu Li¹, Huanwen Wang¹*, Baojun Huang¹, Libin Wang², Rui Wang¹, Beibei He¹, Yansheng Gong¹, Xianluo Hu²*

 ¹ Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
² State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding authors:

E-mail: <u>wanghw@cug.edu.cn</u>; <u>huxl@mail.hust.edu.cn</u>

Fig. S1 EDX spectrum of the $MoS_2@$ bagasse-derived porous carbon (BPC) obtained by SEM-EDX analysis.

Fig. S2 SEM images of "MoS₂+BPC". The product was prepared by one-step sulfuration of the "BPC+S+(NH₄)₆Mo₇O₂₄·4H₂O" mixture.

Fig. S3 (a-c) FESEM images and (d) N_2 adsorption-desorption isotherms and porosity distribution of pure MoS_2 sample, which was obtained by annealing the "sulfur + $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ " mixture.

Fig. S4 Morphologies (a) of the $MoS_2@BPC$ composite. (b-d) elemental mapping images of b) C, c) Mo, and d) S.

Fig. S5 GCD curves of $MoS_2@BPC$ (a) and pure MoS_2 (b) at 0.2 Ag⁻¹.

Fig. S6 (a) GCD curves and (b) Rate performance of the pure MoS₂ electrode.

Fig. S7 (a) Rate performance and cycling performance at (b) 0.2 A g^{-1} and (c) 2 A g^{-1} of the BPC electrode in the range of 0.01–3 V (*vs* Na/Na⁺).

Fig. S8 (a) Rate performance and (b) GCD curves at different current densities of the $MoS_2@BPC$ electrode at the mass loading of 2 mg·cm⁻².

Fig. S9 (a) CV curves of the pure MoS_2 electrode at different scan rates. (b) Voltammetric response at a scan rate of 20 mV s⁻¹. The capacitive contribution to the total current is shown by the shaded region. (c) Normalized contribution ratio of capacitive capacities at different scan rates.

Fig. S10 (a) CV curves at different scan rates, (b) GCD curves, (c) Rate performance, and (d) Cycling performance at 0.2 A g^{-1} of BPC in the range of 2.5–4.5 V (*vs* Na/Na⁺) as the cathode of NICs.

Fig. S11 (a) Cycling performances and (b) the corresponding GCD curves of the $MoS_2@BPC//BPC$ NIC at 0.2 A g⁻¹.

Table S1 Comparison of cycle performance and rate performance for $MoS_2@BPC$ anodes with the previous reports.

Materials	Voltage	Cycle performance		Rate performance		
	Range	Capacity	Current	Capacity	Current	Refs.
	(V)	(mAhg ⁻¹)	density((mAhg-	density	
		/cycles	$A \cdot g^{-1}$	1)	$(A \cdot g^{-1})$	
MoS ₂	0.01-3	~250/300	0.2	200, 175	1, 10	1
nanoflowers						1
MoS ₂	0.01-3	386/100	0.04	530, 330,	0.04, 0.08,	2
Nanosheets		251/100	0.32	305, 251	0.16, 0.32	_
3D MoS ₂ -	0.001-3	480/50	0.2	427, 355,	1, 3,	3
Graphene		322/600	1.5	306, 273,	5, 7,	
Microspheres				234	10	
	0.01-3	420/600	0.1	450, 400,	0.1, 0.2,	4
MoS ₂ @RGO				280	2	
		284/600	1			
MoS2-RGO	0.005-	305/50	0.1	305 273	0 1 0 25	5
	2.5		0.1	245, 214	0.5.1	5
MoS ₂ -	0.01-3	340/50	0.1	~390.	0.05.	6
Graphene		300/500	1	~350.	0.5,	0
1				~300.	2,	
				230	5	
3D MoS ₂	0.005-	504.6/100	0.05	504.6,	0.05,	7
nanosheet/C	2.5	495.9/80	0.2	328.4	0.5	
NTs						
MoS ₂ /SWNT	0.1-3	390/100	0.2	437, 404,	0.05, 0.2,	8
		~315/1000	0.5	341, 302,	1, 5,	
				268, 192	10, 20	
E-MoS ₂	0.01-3	241/700	1	298, 281,	0.05, 0.1,	9
/carbon		216/700	2	241, 222,	0.5, 1,	-
fibers				164, 138,	5, 10,	
				104	20	
Exfoliated	0.01-2.5	390/100	0.1	~520,	0.05, 0.1,	10
MoS ₂ –C				400,	0.2, 0.4,	
				380, 350,	1, 2	
				320, 300		
MoS ₂ /porous	0.01-3	404/100	0.1	467, 406,	0.1, 0.2,	11
carbon		280/300	1	338, 293,	0.5, 1,	
				183, 122	5, 10	
Vertically	0.01-3	286/100	0.08	348, 321,	0.04, 0.08,	12
Aligned				271, 230,	0.32, 0.64,	
MoS ₂				205	1	

@carbon						
MoS ₂ /C	0.05-3	~500/100	0.1	481, 406,	0.1, 0.5,	13
microspheres		390/2500	1	391, 339,	1, 5,	15
				312, 244	10, 20	
MoS ₂ /C	0.01-3	283.9/600	0.1	401, 370,	0.05, 0.1,	14
nanofibers				317, 283,	0.2, 0.5,	11
				247, 148,	1, 3,	
				89	5	
MoS ₂ /Porous	0.01-3	415/350	0.2	500, 345	0.1, 5	15
Carbon		340/550	1			10
MoS ₂ @BPC	0.01-3	332.4/400	0.2	491.5,	0.1,	This
		183.5/5000	2	420.6,	0.2,	work
				380.5,	0.5,	
				345,	1,	
				304.4,	2,	
				251.5,	5,	
				202.9,	10,	
				179.8	15	

Table	e S2 Energy and power	density comparison	with the reports	in the literature for
hybric	d NIC devices.			

Positive	Negative	Voltage	Energy	Corresponding		
electrode	electrode	Window	density	Power density	Refs.	
		(V)	$(Wh kg^{-1})$	(W kg ⁻¹)		
PSC	Na ₂ Ti ₃ O ₇	0.5-3.5	111.2	800	16	
			33.2	11200		
rGO	NaTi ₂ (PO ₄) ₃	0-2.7	334	53	17	
			31	6700	- /	
BAC	TiO ₂ @CNT@	1-4	126	81.2	18	
	C		37.9	12400		
GFs	Na ₂ Ti ₃ O ₇ /CT	1-3	55	200	200 19 000 19	
			21.7	3000		
PDPC	TiO ₂ -RGO	1-4	94.7	7 247		
			30.9	4093	20	
rGO-50	Nb ₂ O ₅ @C	1-4.3	76	80	80 21	
			6	20800	21	
AC	NaTi ₂ (PO ₄) ₃	0.01-2.5	56	39	22	
			31	4096		
AC	Ti(O,N)-MP-	0.5-4	46	46	23	
	NWs		10.9	11500	_ 23	
PSC	Nb ₂ O ₅	1-3	43.2	160	24	
	nanosheets		24	5760	21	
AC	Na-TNT	0-3	34	889	25	
					20	
AC	N-TiO ₂	1-4	80.3	500	26	
			24.6	12500	20	
PSC	NTO@CNT	0-3	58.5	300	27	
			21.6	3000	_,	
CFs	TiO ₂ /CFC	1.2-4.3	73.8	550	28	
			20.5	13750	20	
NVP-	nanoporous	0.2-2.7	15	5424	29	
AHD	carbon				2)	
AC	MWTOG	1-3.8	64.2	56.3	30	
			25.8	1367	50	
BPC	BPC/MoS ₂	0-4	112.2	55	This	
			53.2	8333	work	

References

- 1. Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao and J. Chen, *Angew. Chem.*, 2014, **126**, 13008-13012.
- 2. D. Su, S. Dou and G. Wang, Adv. Energy Mater., 2015, 5, 1401205-1401211.
- S. H. Choi., Y. N. Ko., J. K. Lee. and Y. C. Kang., *Adv. Funct. Mater.*, 2015, 25, 1780-1788.
- 4. Z. Che, Y. Li, K. Chen and M. Wei, J. Power Sources, 2016, 331, 50-57.
- 5. W. Qin, T. Chen, L. Pan, L. Niu, B. Hu, D. Li, J. Li and Z. Sun, *Electrochim. Acta*, 2015, **153**, 55-61.
- S. Kalluri, K. H. Seng, Z. Guo, A. Du, K. Konstantinov, H. K. Liu and S. X. Dou, *Sci. Rep.*, 2015, 5, 11989.
- 7. S. Zhang, X. Yu, H. Yu, Y. Chen, P. Gao, C. Li and C. Zhu, *ACS Appl. Mater*. *Interfaces*, 2014, **6**, 21880-21885.
- Y. Liu, X. He, D. Hanlon, A. Harvey, J. N. Coleman and Y. Li, ACS Nano, 2016, 10, 8821-8828.
- C. Zhao, C. Yu, M. Zhang, Q. Sun, S. Li, M. Norouzi Banis, X. Han, Q. Dong, J. Yang, G. Wang, X. Sun and J. Qiu, *Nano Energy*, 2017, 41, 66-74.
- Y. X. Wang, K. H. Seng, S. L. Chou, J. Z. Wang, Z. Guo, D. Wexler, H. K. Liu and S. X. Dou, *Chem. Commun.*, 2014, 50, 10730-10733.
- S. K. Park, J. Lee, S. Bong, B. Jang, K. D. Seong and Y. Piao, ACS Appl. Mater. Interfaces, 2016, 8, 19456-19465.
- 12. X. Xie, T. Makaryan, M. Zhao, K. L. V. Aken, Y. Gogotsi and G. Wang, *Adv. Energy Mater.*, 2016, 6.
- Y. Lu, Q. Zhao, N. Zhang, K. Lei, F. Li and J. Chen, *Adv. Funct. Mater*, 2016, 26, 911–918.
- 14. X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou and Y. Huang, *Sci. Rep.*, 2015, **5**, 9254.
- 15. Y. Tang, Z. Zhao, Y. Wang, Y. Dong, Y. Liu, X. Wang and J. Qiu, *Electrochim. Acta*, 2017, **225**, 369-377.
- 16. H. Li, L. Peng, Y. Zhu, X. Zhang and G. Yu, *Nano Lett.*, 2016, 16, 5938-5943.
- H. K. Roh, M. S. Kim, K. Y. Chung, M. Ulaganathan, V. Aravindan, S. Madhavi, K. C. Roh and K. B. Kim, *J. Mater. Chem. A*, 2017, 5, 17506-17516.
- 18. Y. E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei and Z. Zhou, *Adv. Energy Mater.*, 2017, **7**, 1701222.
- 19. S. Dong, L. Shen, H. Li, G. Pang, H. Dou and X. Zhang, *Adv. Funct. Mater.*, 2016, **26**, 3703-3710.
- 20. R. Wang, S. Wang, Y. Zhang, D. Jin, X. Tao and L. Zhang, *J. Mater. Chem. A*, 2018, **6**, 1017-1027.
- 21. E. Lim, C. Jo, M. S. Kim, M. H. Kim, J. Chun, H. Kim, J. Park, K. C. Roh, K. Kang, S. Yoon and J. Lee, *Adv. Funct. Mater.*, 2016, **26**, 3711-3719.
- 22. T. Wei, G. Yang and C. Wang, *ACS Appl. Mater. Interfaces*, 2017, **9**, 31861-31870.
- 23. J. Dong, Y. Jiang, Q. Li, Q. Wei, W. Yang, S. Tan, X. Xu, Q. An and L. Mai, *J. Mater. Chem. A*, 2017, **5**, 10827-10835.

- 24. H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen, X. Zhang and G. Yu, *Chem. Mater.*, 2016, **28**, 5753-5760.
- 25. J. Yin, L. Qi and H. Wang, ACS Appl. Mater. Interfaces, 2012, 4, 2762-2768.
- 26. S. Liu, Z. Cai, J. Zhou, A. Pan and S. Liang, J. Mater. Chem. A, 2016, 4, 18278-18283.
- 27. S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng and X. Zhang, *J. Mater. Chem. A*, 2015, **3**, 21277-21283.
- 28. S. Liu, Z. Luo, G. Tian, M. Zhu, Z. Cai, A. Pan and S. Liang, *J. Power Sources*, 2017, **363**, 284-290.
- Z. Jian, V. Raju, Z. Li, Z. Xing, Y.-S. Hu and X. Ji, *Adv. Funct. Mater.*, 2015, 25, 5778-5785.
- 30. Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu and Y. Lu, *ACS Nano*, 2017, **11**, 2952-2960.