Supporting Information

Synergistic Effects of Engineered Spinel Hetero-Metallic

Cobaltites on Electrochemical Pseudo-Capacitive Behaviors

Young-Woo Lee,^{‡a,b} John Hong,^{‡a} Geon-Hyoung An,^a Sangyeon Pak,^a Juwon Lee,^a Yuljae Cho,^a Sanghyo Lee,^a SeungNam Cha,^{*a} Jung Inn Sohn^{*a,c} and Jong Min Kim^d

- ^a Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK. E-mail: seungnam.cha@eng.ox.ac.uk; Fax: +44(0)-1865-273010; Tel: +44(0)-1865-273912
- ^b Department of Energy Systems, Soonchunhyang University, Asan, Chungcheongnam-do
 31538, Republic of Korea.
- ^c Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea. E-mail: junginn.sohn@dongguk.edu; Fax: +82-2-2277-1274; Tel: +82-2-2260-3190
- ^d Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, United Kingdom.

* Corresponding author. Tel: +82-2-2260-3190. Fax: +82-2-2277-1274.

E-mail address: seungnam.cha@eng.ox.ac.uk, junginn.sohn@dongguk.edu.

‡ These authors contributed equally to this work.

Experimental method

Material Synthesis

All chemicals were of analytical grade and used for synthesis without any further purification. The ZNCH electrodes on Ni foam were synthesized through a one-step hydrothermal synthesis. First, the conductive Ni foam was cleaned using 1.0 M HCl, ethanol, and deionized water. 0.5 mmol of Zn(NO₃)₂· 6H₂O, 0.5 mmol of Ni(NO₃)· 6H₂O, 2.0 mmol of Co(NO₃)₂· 6H₂O, 5.0 mmol of urea, and 3.0 mmol of NH₄F were then dissolved in deionized water. Next, the solution and Ni foam were transferred into a Teflon-lined stainless-steel autoclave. The autoclave was kept at 150 °C for 12 hr before the sample was rinsed with deionized water and dried at 60 °C for another 12 hr. Finally, the sample was annealed at 400 °C for 2 hr with a heating rate of 1 °C min⁻¹ under Ar. The ZnCo₂O₄ and NiCo₂O₄ electrodes were similarly synthesized while only using 1.0 mmol of Zn(NO₃)₂· 6H₂O and 1.0 mmol of Ni(NO₃)· 6H₂O for the ZnCo₂O₄ and NiCo₂O₄ electrodes, respectively. The solutions were then transferred into a Teflon-lined stainless-steel autoclave and kept at 150 °C for 12 hr. Finally, the samples were annealed at 400 °C for 2 hr under the same heating rate and environmental conditions as above.

Electrochemical Measurements

The electrochemical properties of the ZNCH electrodes were measured in a three-electrode system using a working electrode, a Pt wire as the counter electrode, and an Ag/AgCl electrode (in saturated 3 M KCl) as the reference electrode. Cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements were conducted with a potentiostat (PGSTAT302N, Metrohm, Autolab) at different current densities. The active carbon (AC) electrodes were fabricated by mixing the active carbon,

super-P, and Polyvinylidene Fluoride (PVDF) binder as the active material, conductive material, and binding material, respectively, in a weight ratio of 80:10:10 to obtain a slurry

Figure S1. Synthetic illustration of hierarchically branched nanostructures of the ZNCH.

Figure S2. SEM images of (a,b) ZnCo₂O₄ and (c,d) NiCo₂O₄.

Figure S3. Nitrogen adsorption-desorption isotherms of the ZNCH. The inset indicates the pore size distribution of ZNCH.

Figure S4. (a) CV and (b) Calculated capacitance curves of the ZNCH. (c) Schematic illustration of electrochemical kinetics of the ZNCH.

Figure S5. CV and GCD curves of (a) NiCo₂O₄ and (b) ZnCo₂O₄.

Figure S6. Mass capacitance comparison of the transition metal cobaltite samples.

Figure S7. EIS curves of (a) NiCo₂O₄, (b) ZNCH and (c) ZnCo₂O₄.

Figure S8. (a) A comparison of various electrochemical characteristics such as charge transfer resistance (R_{ct}), capacity retention, and specific mass capacitance for three different electrodes.
(b) Illustration images showing the electrochemical role for Zn and Ni in the tetrahedral site of spinel cobaltite structure.