Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting information

Development of microencapsulated Al-Si phase change material with high-temperature thermal stability and 3000 cycles durability

Nan Sheng^{a+}, Chunyu Zhu^a, Genki Saito^a, Takehito Hiraki^b, Miki Haka^a, Yuta Hasegawa^a, Hiroki Sakai^a, Kaixin Dong^a, Tomohiro Akiyama^a, and Takahiro Nomura^{a+}

Center for Advanced Research of Energy and Materials, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628 Japan Graduate School of Engineering, Tohoku University, Sendai 980-8578, Japan † Corresponding author. Tel.: +81 11 706 6842; Fax: +81 11 706 6849 E-mail: nms-tropy@eng.hokudai.ac.jp (T. Nomura); s nan@eng.hokudai.ac.jp (N. Sheng)

Figure S1. Procedures for the preparation of Al-Si/Al₂O₃ core/shell MEPCM particles.

Figure S2. Typical solubility plot

Figure S3. SEM views of Al-25 wt.% Si (a) after 3 h of boehmite treatment, and (b) after 3 h of boehmite treatment followed by 6 h of heat oxidation at 1150 °C.

Figure S4. XRD patterns of PCM particles after boehmite and precipitation treatment. The sample of raw $Al(OH)_3$ is also shown as a comparison.

Figure S5. Enlarged XRD spectra from Figure 3. (a) the final samples obtained after heat-oxidation, which were previously subjected to only boehmite treatments (i), boehmite and precipitation treatments without $Al(OH)_3$ -addition, (i+ii) boehmite and precipitation treatments with $Al(OH)_3$ -addition with pH value of 6. (b) The final samples obtained after heat-oxidation, which were previously subjected to both boehmite and precipitation treatments as-conducted with $Al(OH)_3$ -added solutions with different pH values;

Figure S6. EDS elemental mapping and spectra of MEPCMs after 100 meltingsolidification cycles. The samples were subjected to a boehmite treatment during their synthesis process at pH 6, 7, 8, and 9, respectively.

	pН	$L (J \cdot g^{-1})$				Tm (°C)			
Raw Material*1		432				577			
MEPCM*2	6	257				578			
		1150 °C 6h	100 cycles	1000 cycles	3000 cycles	1150 °C 6h	100 cycles	1000 cycles	3000 cycles
Al(OH) ₃ 0 g/ L	6	246	257			578	579		
Al(OH) ₃ 3.3 g/ L	6	251	243			578	578		
	7	199	198	197		578	578	578	
	8	183	183	183	180	578	577	578	577
	9	181	171			578	578		

Table S1. Latent heat and phase change temperature of PCM calculated from DSC curves.

*1: Same as Ref. 46

*2: Condition: 3h boehmite treatment then 1150 °C, 6 h heat-oxidation.

Figure S7. Thermogravimetric (TG) curve during heat-oxidation of the precursor samples obtained with different boehmite treatment (left figure). The right figure is the enlargement of the part from 1 - 4000 s.