Electronic Supplementary Information

CO₂-philic WS₂ laminated membranes with nanoconfined ionic liquid

Danke Chen^{a†}, Wensen Wang^{b†}, Wen Ying^a, Yi Guo^a, Donghui Meng^c, Youguo Yan^{b*}, Rongxin Yan^{c*} and Xinsheng Peng^{a*}

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China, 310027.

^b.College of Science, China University of Petroleum (East China), Qingdao, China, 266580.

^c.Beijing Institute of Spacecraft Environment Engineering, Beijing, China, 100094.

[†]These authors contributed equally to this work.

Email address: pengxinsheng@zju.edu.cn (X. Peng), <u>yyg@upc.edu.cn</u> (Y. Yan), and yanrxz@126.com (R. Yan).

Additional Figures and Tables

Figure S1 A bichamber system for simulation of gas permeance through the WS_2 SILM. White, yellow, orange, cyan, and red balls denote helium, sulfur, tungsten, carbon, and oxygen, respectively. Greencyan and magenta stick represent [BMIM] and BF_4 molecules.

Figure S2 Partial atomic charges on the $[BMIM]^+$ and BF_4^- ions. Atoms are labelled for the bonded-term parameters.

Figure S3 AFM image of WS_2 sheet. Lateral dimension is scaled between two star signs, as shown in right side. The WS_2 sheet is 1.8 nm in thickness. The sharply drop in the height profile is due to silicon substrate.

Figure S4 The contact angle image of $[BMIM][BF_4]$ on WS_2 membrane surface.

Figure S5 XRD patterns of WS_2 membrane and a series of WS_2 SILMs (16.6 wt% IL, 21.2 wt% IL, 25.5 wt% IL).

Figure S6 The EDS spectra of WS₂ SILM (25.5 wt% IL): a) cross-section SEM images of WS₂ SILM (25.5 wt% IL), b)-g) EDS mapping images of W, S, C, N, B and F recorded from the marked zone in a), respectively.

Figure S7 NMR characterization: the ¹³C spectra of WS₂ SILM (25.5 wt% IL ([BMIM][BF4])) and bulk [BMIM][BF4].

Figure S8 The content of [BMIM][BF₄] influence on the separation performance of WS₂ SILMs.

Figure S9 The CO_2/N_2 separation performance of WS₂ SILM (25.5 wt% IL) compared with other materials constructed membranes (see detail in Table S4).

Figure S10 The CO_2/CH_4 separation performance of WS₂ SILM (25.5 wt% IL) compared with other materials (Table S4).

Figure S11 The CO_2/H_2 separation performance of WS₂ SILM (25.5 wt% IL) compared with other materials (Table S4).

Figure S12 The permeance of CO_2 and N_2 through WS₂ SILM (25.5 wt% IL) for seven days.

	1			1 2		
Element	Не	W	S	Ν	C5	C3
ε (kcal/mol)	0.0203	0.067	0.274	0.170	0.086	0.011
σ (Å)	2.600	3.069	4.035	3.250	3.400	3.400
Element	C2	H1	H2	H3	В	F
ε (kcal/mol)	0.011	0.015	0.0157	0.0157	0.095	0.061
σ (Å)	3.400	2.450	2.650	2.500	3.581	3.118

Table S1 Lennard-Jones parameters of helium sheet, WS2 and IL employed in this work1

Table S2 Partial atomic charges and Lennard-Jones parameters for gas molecules

	C	O ₂		N ₂		
	С	0	Ν	Center of Mass		
ε (kcal/mol)	0.0559	0.160	0.0728	0		
σ (Å)	2.757	2.565	3.318	0		
q / e	0.6512	-0.3256	-0.4084	0.8096		

[BMIM][BF ₄]	WS ₂	Shift of	WS ₂	Shift of	WS ₂	Shift of	Assignments
	SILM	WS ₂ SILM	SILM	WS ₂ SILM	SILM	WS ₂ SILM	
	(25.5	(25.5 wt%)	(21.2	(21.2 wt%)	(16.6	(16.6 wt%)	
	wt%)		wt%)		wt%)		
3160.81	3151.16	-9.64	3160.81	0.00	3160.81	0.00	v C4-H, v C5-
							H (out-of-
							phase)
3122.24	3126.09	3.86	3118.38	-3.86	3122.24	0.00	<i>v</i> С2-Н
2964.10	2958.31	-5.79	2962.17	-1.93	2964.10	0.00	$v_{as} \operatorname{CH}_2$
2939.03	-	-	2937.10	-	2937.10	-1.93	$v_{as} \operatorname{CH}_2$
2877.32	2875.39	-1.93	2873.46	-3.86	2875.39	-1.93	$v_s \operatorname{CH}_2(\operatorname{Bu})$
1573.65	1560.14	-13.51	1560.15	-13.50	1569.80	-3.86	v C=C
1465.66	1457.94	-7.71	-	-	1465.66	0.00	$\delta_s \operatorname{CH}_3$
1430.94	1419.37	-11.57	1430.15	-0.79	1430.94	0.00	$\delta_s \operatorname{CH}_3(\operatorname{Me})$
1384.66	-	-	-	-	1386.59	1.93	w CH ₂
1371.16	1375.02	3.86	1375.02	3.86	-	-	<i>v</i> _{as} C2N1C5,
							w CH ₂
1338.38	1340.31	1.93	1340.31	1.93	1340.31	0.00	v N-Bu, N-
							Me, breathing,
							w CH ₂
1284.38	1272.81	-11.57	1284.38	0.00	1286.31	1.93	$v \operatorname{BF}_4, t \operatorname{CH}_2$
1168.67	1164.81	-3.86	1168.67	0.00	1168.67	0.00	v N-Bu, N-
							Me,
							r CH
1114.67	1112.74	-1.93	1114.67	0.00	1116.60	1.93	<i>r</i> CH ₃ , <i>r</i> CH ₃
							(Bu)
1031.75	971.96	-59.78	1016.32	-15.43	1035.60	3.86	<i>v</i> C-C, <i>v</i> BF
1014.39	966.18	-48.21	1006.68	-7.71	1016.32	1.93	v BF ₄
846.61	792.61	-54.00	842.75	-3.86	844.68	-1.93	γ С4-Н, С5-Н
752.11	721.26	-30.86	736.69	-15.43	748.26	-3.86	r CH ₂
696.19	690.40	-5.79	-	-	700.04	3.86	v N-Bu, v N-
							Me

Table S3 WS $_2$ SILMs' obvious FTIR Shift compared with bulk [BMIM][BF $_4$]².

	[BMIM][BF4]	WS ₂ SILM	Shift
C1	-13.167ª	-13.287	-0.120
C2	-19.421	-19.507	-0.086
C3	-32.038	-32.199	-0.161
C4	-49.648	-49.318	0.330
C5	-124.034	-123.74	0.294
C6	-122.733	-123.013	-0.28
C7	-137.056	-137.316	-0.26
C8	-36.121	-36.214	-0.103

Table S4 WS₂ SILM' Shifts of ¹³C Chemical Shift compared with bulk [BMIM][BF₄]

^a the unit is ppm.

in the structure per sector	Permeance	ΛΡ	<i>a</i>	â		
Materials	(GPU)	(bar)	u CO ₂ /N ₂	u CO₂/CH₄	u CO ₂ /H ₂	Ref
BTPP-HCl-240	100	1	25	25	-	3
PI + acid-treated MWCNTs	1.7-2.2	1	37.7	24.5	-	4
PEG crosslinked with						
[TETA][Tfa] 80% free PEGDME	1.3	2	131.6	70.3	-	5
PEG cross-linked with A-amine 40% free PEGDME	0.9	2	138.3	35	-	5
PEG cross-linked with A-amine 80% free PEGDME	2.2	2	108.5	7.6	-	5
6FDA-DAM-ZIF-11	3.9	4		31	-	6
(PDAC/PSS) ₂₅ (GO/GO) _{40.5}	1175	-	15.33	-	-	7
(PDAC/PSS)25(GO/GO)20.5	1269	-	11.3	-	-	7
Pebax/Ag/50%[BMIM][BF ₄]	3.2	10	187.5	61	-	8
IL-Pebax 165/ZIF-8 Mixed Matrix Membranes	20.1	2	71	36	10	9
DNMDAmTMC/PS	173	1	70	-	-	10
PVAm-EDA/PS	239	1	83	-	-	11
PVAm-EDA/PS	607	1	106	-	-	11
PVAm/zeolite-y/PES	1100	0.1	200	-	-	12
AF-MWNTs/PVA-POS/PSF	33	15	384	264	-	13
AbS-PEG	6.1	1	44.36	-	-	14
Aminosilane Cross-linked PEG	0.34	0.69	30	-	-	15
PEG-silica	8.45	2.02	40	-	-	16
Polyactive	795	1	68.6	17.6	9.5	17
Pebax-PEGDME50	6.1-10.1	0.3	43	-	15.2	18
PU100	0.2	10	90	31	-	19
PTT-b-PEO	2.9-6.7	0.3	51	-	10	20
Pebax 1657/PDA	5.4-6.7	2.02	-	48	-	21
PC	0.39	3	-	26.6	-	22
PC/PEG-300 (95:5)	0.28	3	-	40.9	-	22
[TESPMIM][BF ₄] modified membrane ILM-4	298.5	2	-	87		23
ETS-10/Matrimid	0.01-0.29	8	-	33.3	-	24
[DMAPAH][EOAc]/PES	25.2	0.02 5	151.4	72.1	-	25
[DMAPAH][TFA]/PES	27.9	0.02	128.9	67	-	25
[Emim][B(CN) ₄]/PES	17	0.35	53.7	-	-	26
[Emim][CF ₃ SO ₃]/PES	6.05	0.2	35.4	-	-	27
[P66614][C1]/PES	2.3	0.2	14.6	3.9	-	27

Table S5 Separation performance of WS $_2$ SILM (25.5 wt% IL) compared with other materials.

Table S5 continued						
[Emim][Ac]/PVDF	10.6	0.45	32.4	-	-	28
[C ₂ mim][Tf ₂ N] _{0.75} [Ac] _{0.25} /PVDF	8.4	1	18	31.4	-	29
[C ₃ NH ₂ mim] [CF ₃ SO ₃]/PTFE	74.3	1.01		123.8	-	30
[Emim][Gly]/PTFE	224.1	0.1	145.5	-	-	31
[N ₂₂₂₄] ₂ [maleate]/PES	24.7-29.3	0.1	258.2	218.5	_	32
Matrimids/NHs-20	2.8-4.0	2	61	52	_	33
UTFC-MMMs	1200	3.5	35	-	-	34
Pebax®/PEG50	1.5-2.5	0.6	47	15.5	10.8	35
Matrimid-CNTs/GO-5/5	0.4-0.5	2	81	84.6	-	36
PEO-ran-PPO-T6T6T	4.9	4	36	10.9	_	37
PEG cross-linked with ILs	0 2-0 23	0.81	13.6	-	-	38
PEG-MOF	1.47	1	30	29	_	39
PETA/PEGMEA	3 4-8 5	2	51	12	-	40
$APS/MS/Al_{2}O_{2}(S)$	50	15	800	-	_	41
PVAm/PVA	212	2	174	-	_	42
PEO-PBT/PEG-DBE (PAN-	212	2	1,1			12
PDMS)	1500	0.3	40	11.2	12.4	43
PEO-PBT	3	0.3	51.5	16.8	10.3	43
PEO-PBT+PEG	4.16	0.3	48.7	15.8	11.6	43
PEO-PBT+PEG-BE	8	0.3	50.1	12.5	11.8	43
PETEDA-PVA/PES	65.1	2	-	52	-	44
AAIL-based DN gel membranes	6.7	0.1	100	-	-	45
9,10-Diisopropyltriptycene-	22 0 24 1	2	22	22		16
Based KAUST-PI Membranes	23.9-34.1	2	33	23	-	46
M-3-20-750	253.3	1	-	105	-	47
M-3-100-750	817.8	1	-	76.8	-	47
M-2-20-750	864.9	1	-	66.4	-	47
6FDA/BPDA-DAM	81-139.9	2	-	54	-	48
6FDA/mPDA/DABA -CMSMs	147.5	6.9	-	52	-	49
6FDA/mPDA/DABA-CMSMs	21.6	6.9	-	118	-	49
4 wt%-ns-CuBDC@PIM-1	32.8-38.3	3	-	24	-	50
6FDA-CADA1-450	23.2	2.02	17.2	18.9	-	51
6FDA-CADA1-425	11.5	2.02	20	28.1	-	51
PIL-IL 75	1.9	1	35	18	-	52
AO-PIM-1	11.5-14.4	2	35	34	-	53
PIM-1	59.2-74	2	24	16	-	53
poly(ethylene glycol) acrylate	5.7	4.5	-	-	12	54
LPPEOMASQ82	30.6	3	43.9	11.7	8.9	55
LPPEOMASQ64	7.1	3	38.8	12.7	7.8	55

Table S5 continued						
poly(ethylene glycol)dimethyl incorporated to PEG	13-26	3.55	-	-	13	56
(bicycloheptenyl)ethylterminated	27.2-34	0.4	14			57
(PDMSPNB) membranes	27.2-34	0.4	14	-	-	57
SIPN-3-7-10	9.5-11.8	3.55	61.4	-	15.6	58
SIPN-7-3-10	11.9-14.9	3.55	45.7	-	14.7	58
SIPN-0-10-10	7.1-8.8	3.55	65.9	-	14.5	58
SIPN-5-5-10	9.9-12.3	3.55	52.1	-	14.7	58
GO membranes under wet- conditions	100	0.3	57	32	13	59
WS_2 SILM (25.5 wt% IL)	47.3	0.4	153.21	68.81	13.56	This work

[BMIM][BF ₄]-based membranes	CO ₂ permeance (GPU)	Selectivity (CO ₂ /N ₂)	Selectivity (CO ₂ /CH ₄)	Ref.
Neat [BMIM][BF ₄]	17	5	4.8	60
[BMIM][BF ₄]/Cu	25	11	11	60
[BMIM][BF ₄] / (Cu NPs/KIT-6) 1/0.1	51	16	23	61
[BMIM][BF ₄]-PES	11.5	50	-	62
0.1Water/[BMIM][BF ₄]-PES	13.8	60	-	62
0.15Water/[BMIM][BF ₄]-PES	13.3	47	-	62
[BMIM][BF ₄]/AgO	14.1	28.2	-	63
[BMIM][BF ₄]/CuO	52.4	21	-	64
[BMIM][BF ₄]/LiBF ₄	13.36	8.4	8.25	65
[BMIM][BF ₄]/cyanuric chloride	19.2	11	10.7	66
WS ₂ SILM (25.5 wt%)	47.3	153.21	68.81	This work

Table S6. Gas separation performance of WS_2 SILM (25.5 wt% IL) compared with other [BMIM][BF₄]-based membranes.

References

- 1. J. N. C. Lopes, J. D. And and A. A. H. Pádua, J. Phys. Chem. B, 2004, 108, 2038-2047.
- S. A. Katsyuba, E. E. Zvereva, A. Vidiš and P. J. Dyson, J. Phys. Chem. A, 2007, 111, 352-370.
- Y. Liang, M. Kanezashi, H. Nagasawa, J. Ohshita, A. Naka and T. Tsuru, *Ind. Eng. Chem. Res.* 2017, 56.
- 4. H. Sun, T. Wang, Y. Xu, W. Gao, P. Li and Q. J. Niu, Sep. Purif. Technol. 2017, 177, 327-336.
- 5. Z. Dai, L. Ansaloni, D. L. Gin, R. D. Noble and L. Deng, J. Membr. Sci. 2017, **523**, 551-560.
- 6. M. S. Boroglu and A. B. Yumru, Sep. Purif. Technol. 2017, 173, 269-279.
- 7. J. Heo, M. Choi, J. Chang, D. Ji, S. W. Kang and J. Hong, Sci. Rep. 2017, 7, 456.
- E. E. Ghasemi, M. Omidkhah and A. A. Ebadi, ACS Appl. Mater. Interfaces, 2017, 9, 10094-10105.
- A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi and A. Kargari, *J. Membr. Sci.* 2017, **524**, 652-662.
- X. Yu, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang and S. Wang, J. Membr. Sci. 2010, 362, 265-278.
- S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang and S. Wang, J. Membr. Sci. 2011, 378, 425-437.
- 12. Y. Chen, L. Zhao, B. Wang, P. Dutta and W. S. W. Ho, J. Membr. Sci. 2016, 497, 21-28.
- L. Ansaloni, Y. Zhao, B. T. Jung, K. Ramasubramanian, M. G. Baschetti and W. S. W. Ho, J. Membr. Sci. 2015, 490, 18-28.
- A. E. Amooghin, H. Sanaeepur, A. Moghadassi, A. Kargari, D. Ghanbari and Z. S. Mehrabadi, Sep. Sci. Technol. 2010, 45, 1385-1394.
- 15. H. Cong and Y. Bing, Ind. Eng. Chem. Res. 2010, 49, 9363-9369.
- 16. J. Xia, S. Liu, C. H. Lau and T. S. Chung, *Macromolecules*, 2011, 44, 5268-5280.
- 17. W. Yave, A. Car, J. Wind and K. V. Peinemann, *Nanotechnology*, 2010, 21, 395301.
- 18. W. Yave, A. Car and K. V. Peinemann, J. Membr. Sci. 2010, 350, 124-129.
- M. M. Talakesh, M. Sadeghi, M. P. Chenar and A. Khosravi, J. Membr. Sci. 2012, 415-416, 469-477.
- 20. W. Yave, A. Szymczyk, N. Yave and Z. Roslaniec, J. Membr. Sci. 2010, 362, 407-416.
- 21. Y. Liu, X. Li, Y. Qin, R. Guo and J. Zhang, J. Appl. Polym. Sci. 2016, 134.
- 22. Z. Hamrahi and A. Kargari, Sep. Sci. Technol. 2017, 52, 544-556.
- B. Liu, R. Zhou, N. Bu, Q. Wang, S. Zhong, B. Wang and K. Hidetoshi, J. Membr. Sci. 2017, 524, 12-19.
- 24. V. Martin-Gil, A. López, P. Hrabanek, R. Mallada, I. F. J. Vankelecom and V. Fila, *J. Membr. Sci.* 2017, **523**, 24-35.
- 25. X. M. Zhang, Z. H. Tu, H. Li, L. Li, Y. T. Wu and X. B. Hu, J. Membr. Sci. 2017, 527, 60-67.
- 26. S. M. Mahurin, P. C. Hillesheim, J. S. Yeary, D. E. Jiang and S. Dai, *RSC Adv.* 2012, **2**, 11813-11819.
- P. Scovazzo, J. Kieft, D. A. Finan, C. Koval, D. B. Dan and R. Noble, *J. Membr. Sci.* 2004, 238, 57-63.
- 28. E. Santos, J. Albo and A. Irabien, J. Membr. Sci. 2014, 452, 277-283.
- L. C. Tomé, D. J. S. Patinha, C. S. R. Freire, L. P. N. Rebelo and I. M. Marrucho, *RSC Adv.* 2013, 3, 12220-12229.

- S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki,
 F. Kubota and M. Goto, *J. Membr. Sci.* 2008, **314**, 1-4.
- 31. S. Kasahara, E. Kamio, T. Ishigami and H. Matsuyama, Chem. Commun. 2012, 48, 6903.
- 32. Z. Dai, R. D. Noble, D. L. Gin, X. Zhang and L. Deng, J. Membr. Sci. 2016, 497, 1-20.
- X. Li, M. Wang, S. Wang, Y. Li, Z. Jiang, R. Guo, H. Wu, X. Z. Cao, J. Yang and B. Wang, J. Membr. Sci. 2015, 474, 156-166.
- 34. J. Kim, Q. Fu, J. M. Scofield, S. E. Kentish and G. G. Qiao, *Nanoscale*, 2016, 8, 8312-8323.
- 35. A. Car, C. Stropnik, W. Yave and K. V. Peinemann, J. Membr. Sci. 2008, 307, 88-95.
- X. Li, L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Z. Cao, J. Yang and B. Wang, J. Membr. Sci. 2015, 479, 1-10.
- 37. S. R. Reijerkerk, M. Wessling and K. Nijmeijer, J. Membr. Sci. 2011, 378, 479-484.
- 38. E. M. Erdni-Goryaev, A. Y. Alent'Ev, A. S. Shaplov, D. O. Ponkratov and E. I. Lozinskaya, *Polym. Sci.* 2014, **56**, 900-908.
- 39. H. Gong, T. H. Nguyen, R. Wang and T. H. Bae, J. Membr. Sci. 2015, 495, 169-175.
- 40. H. Zhao, X. Ding, P. Yang, L. Li, X. Li and Y. Zhang, J. Membr. Sci. 2015, 489, 258-263.
- Y. Sakamoto, K. Nagata, K. Yogo and K. Yamada, *Microporous Mesoporous Mater*. 2007, 101, 303-311.
- 42. L. Deng, T. J. Kim and M. B. Hägg, J. Membr. Sci. 2009, 340, 154-163.
- 43. W. Yave, A. Car, S. S. Funari, S. P. Nunes and K. V. Peinemann, *Macromolecules*, 2010, **43**, 326-333.
- 44. W. Zhi, L. Meng, C. Yan, J. Wang and S. Wang, J. Membr. Sci. 2007, 290, 250-258.
- 45. F. Moghadam, E. Kamio, A. Yoshizumi and H. Matsuyama, *Chem. Commun.* 2015, **51**, 13658-13661.
- R. Swaidan, M. Alsaeedi, B. Ghanem, E. Litwiller and I. Pinnau, *Macromolecules*, 2014, 47, 5104-5114.
- 47. W. Jiao, Y. Ban, Z. Shi, X. Jiang, Y. Li and W. Yang, J. Membr. Sci. 2017, 533, 1-10.
- 48. K. M. Steel and W. J. Koros, *Carbon*, 2005, **43**, 1843-1856.
- 49. W. Qiu, K. Zhang, F. S. Li, K. Zhang and W. J. Koros, *Chemsuschem*, 2014, 7, 1186-1194.
- 50. Y. Yang, K. Goh, R. Wang and T. H. Bae, *Chem. Commun.* 2017, **53**, 4254.
- 51. C. Zhang, P. Li and B. Cao, J. Membr. Sci. 2017, 528, 206-216.
- K. Friess, M. Lanč, K. Pilnáček, V. Fíla, O. Vopička, Z. Sedláková, M. G. Cowan, W. M. Mcdanel, R. D. Noble and D. L. Gin, *J. Membr. Sci.* 2017, **528**, 64-71.
- 53. R. Swaidan, B. S. Ghanem, E. Litwiller and I. Pinnau, J. Membr. Sci. 2014, 457, 95-102.
- 54. H. Lin and B. D. Freeman, J. Mol. Struct. 2005, 739, 57-74.
- S. Park, A. S. Lee, S. D. Yu, S. S. Hwang, Y. M. Lee, J. H. Lee and J. S. Lee, *Chem. Commun.* 2015, **51**, 15308-15311.
- S. Quan, Y. P. Tang, Z. X. Wang, Z. X. Jiang, R. G. Wang, Y. Y. Liu and L. Shao, *Macromol. Rapid. Commun.* 2015, 36, 490-495.
- 57. T. Hong, Z. Niu, X. Hu, K. Gmernicki, S. Cheng, F. Fan, J. C. Johnson, E. Hong, S. Mahurin and D. E. Jiang, *Chemsuschem*, 2015, **8**, 3595-3604.
- 58. X. Jiang, S. Li and L. Shao, *Energ. Environ. Sci.* 2017, 10, 1339-1344.
- H. W. Kim, H. W. Yoon, B. M. Yoo, J. S. Park, K. L. Gleason, B. D. Freeman and H. B. Park, *Chem. Commun.* 2014, **50**, 13563-13566.
- 60. J. H. Lee, J. Hong, J. H. Kim, Y. S. Kang and S. W. Kang, Chem. Commun. 2012, 48, 5298-

5300.

- 61. S. W. Kang, J. Chang and G. H. Hong, *RSC Adv.* 2015, **5**, 69698-69701.
- 62. W. Zhao, G. He, L. Zhang, J. Ju, H. Dou, F. Nie, C. Li and H. Liu, *J. Membr. Sci.* 2010, **350**, 279-285.
- 63. D. Ji, S. K. Yong and W. K. Sang, Sci. Rep. 2015, 5, 16362-16367.
- 64. Y. S. Park, C. Ha and S. W. Kang, *RSC Adv.* 2017, 7, 33568-33571.
- 65. Y. Choi, G. H. Hong and S. W. Kang, J. Nanosci. Nanotechnol. 2016, 16, 2832-2835.
- 66. G. H. Hong, D. Ji and S. W. Kang, *RSC Adv.* 2014, 4, 16917-16919.