Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information Monolayer-like Hybrid Halide Perovskite Films Prepared by Additive Engineering

without Antisolvent for Solar Cells

Mengru Wang^a, Bo Li^a, Peter Siffalovic^b, Lung-Chien Chen^c, Guozhong Cao^{a,d}, Jianjun

Tian^a*

a Institute of Advanced Materials and Technology, University of Science and Technology

Beijing, 100083, Beijing, P.R. China.

b Institute of Physics, Slovak Academy of Sciences, Bratislava, 84511, Slovakia

c Department of Electro-optical Engineering, National Taipei University of Technology,

10608, Taiwan

d Department of Materials Science and Engineering, University of Washington, Seattle, WA,

98195-2120, USA

*Email: tianjianjun@mater.ustb.edu.cn

Fig. S1. (a-e) Top-view SEM images of perovskite films with different content of MAAc deposited on FTO substrate. White ellipse represents holes ; Small white crystals indicate PbI₂.

Fig. S2. Top-view SEM images of perovskite films prepared by 4 % MAAc additive by antisolvent-free process. The wet film was annealed at 100 °C for 5mins.

Fig. S3. Absorption spectra of the wet perovskite films prepared by MACl (black) and MACl-MAAc (red) based perovskite precursor directly after spin coating.

Fig. S4. SEM images of perovskite intermediate phase film with additive of MACl (a-c) and MACl-MAAc-based (d-f), the perovskite films were dried at 60 °C for 1 min (a, d), and at 100 °C for 5 min (b, e) and 10 min (c, f).

Fig. S5. XRD diffraction intensity and FWHM of the (110) and (220) plane of the perovskite films prepared using 0.5 M MACl and different MAAc content;

Fig. S6. XRD patterns of the perovskite films prepared by antisolvent-free process using 4 % MAAc additive (black); 0.5 M MACl (blue); coordination of 0.5 M MACl and 4 % MAAc (olive).

Fig. S7. UV-Vis of perovskite films prepared by antisolvent-free process using 0.5 M MACl and different MAAc contents.

Fig. S8.the steady-state PL spectra for pristine perovskite film, MACl additive film and MACl+MAAc additive film.

Table S1. Parameters of PL-decay for MACl-MAAc and MACl-based perovskite films

	\mathbf{f}_{1}	$\tau_1^{(ns)}$	f ₂	T ₂ (ns)	T _{ave} (ns)
MACl	3.312	5.722	96.688	45.96	45.788
MACI/ MAAc	0.404	2.487	99.596	50.462	50.452

Fig. S9. J-V curves of the PSCs with a different scanning direction, using a 10 mV/s scanning rate. The structure of devices: FTO/TiO₂ /Perovskite/PCBM /Ag.

Fig. S10. J-V curve of PSC fabricated by using solely the MAAc additive. (Insert: parameters of PSC).