Supporting Information

Rationally Designed Microspheres Consisting of Yolk–Shell Structured FeSe₂-Fe₂O₃ Nanospheres Covered with Graphitic Carbon for Lithium-ion Batteries

Yongju Yoo, Young Jun Hong and Yun Chan Kang*

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

*Correspondence authors. E-mail: yckang@korea.ac.kr (Yun Chan Kang, Fax: (+82) 2-928-3584)

Fig. S1 SEM image of AC microspheres impregnated with ferric nitrate.

Fig. S2 XRD patterns of FeSe₂-GC-AC, FeSe₂@Fe₂O₃-GC, HO-Fe₂O₃, and DO-Fe₂O₃ microspheres.

Fig. S3 SEM image of FeSe₂-GC-AC composite microspheres.

Fig. S4 Raman spectrum of FeSe₂-GC-AC microspheres.

Fig. S5 XRD pattern of Fe₂O₃ powders obtained after oxidation process of FeSe₂@Fe₂O₃-GC at 600 $^{\circ}$ C for 3 h.

Fig. S6 Morphologies of Fe-GC-AC composite microspheres: (a) SEM image, (b,c) TEM images, and (d) HR-TEM image.

Fig. S7 Morphologies of DO-Fe₂O₃ microspheres: (a,b) TEM images, (c) HR-TEM image, (d) SAED pattern, and (e) elemental mapping images.

Fig. S8 (a) N₂ adsorption and desorption isotherms curves and (b) BJH pore size distributions of FeSe₂-GC-AC, FeSe₂-Fe₂O₃-GC, HO-Fe₂O₃, and DO-Fe₂O₃ microspheres.

Equivalent circuit model

Fig. S9 Randle-type equivalent circuit model used for EIS fitting.

 R_e : the electrolyte resistance, corresponding to the intercept of high frequency semicircle at Z': real axis

R_f: the SEI layer resistance corresponding to the high-frequency semicircle

Q1: the dielectric relaxation capacitance corresponding to the high-frequency semicircle

 R_{ct} : the denote the charger transfer resistance related to the middle-frequency semicircle

 Q_2 : the associated double-layer capacitance related to the middle-frequency semicircle Z_w : the Li-ion diffusion resistance

Fig. S10 Real impedance (Z') *vs.* Reciprocal root square of the angular frequency ($\omega^{-1/2}$) plots in low frequency of FeSe₂@Fe₂O₃-GC electrodes before and after cycles.

Active material	Carbon content (wt%)
FeSe ₂ @Fe ₂ O ₃ -GC	52.2
FeSe ₂ -GC-AC	80.5
HO- Fe ₂ O ₃	0
DO- Fe ₂ O ₃	0

Table S1. Carbon contents of $FeSe_2@Fe_2O_3$ -GC, $FeSe_2$ -GC-AC, HO- Fe_2O_3 and DO- Fe_2O_3 microspheres.