Supporting Information for

Ultrafast lithium energy storage enabled by interfacial constructing

interlayer-expanded MoS₂/N-doped carbon nanowires

Huanhuan Sun ^a, Jian-Gan Wang ^{a*}, Yu Zhang ^{b*}, Wei Hua ^a, Yueying Li ^a, and Huanyan Liu ^a

^a State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China

^b Department of Chemical and Biomolecular Engineering, The Hong Kong University

of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

*Corresponding Author E-mail: keyuzhang@ust.hk (Y. Zhang);

wangjiangan@nwpu.edu.cn (J.-G. Wang)

Fig. S1. TEM and HRTEM images of pure MoS_2 .

Fig. S2. N_2 adsorption-desorption isotherms and pore size distribution (the inset) of pure MoS_2 .

Fig. S3. CV curves of pure MoS₂ electrode in the first five cycles.

Fig. S4. Galvanostatic charge/discharge profiles of pure MoS₂ electrode at different cycles.

μ

Fig. S5. (a) SEM and (b) TEM images of images of $MoS_2/N-C$ NWs after 100 cycles.

Sample	Specific	Rate capability at different current				Ref.
	Capacity	densities relative to the initial value				
	at 0.1 A g ⁻¹	1 A g ⁻¹	2 A g ⁻¹	5 A g ⁻¹	10 A	-
	$(mAh g^{-1})$	-	-	-	g^{-1}	
TiO ₂ @Carbon@	925	81.7 %	72.4 %	-	-	1
MoS_2						
MoS ₂ /CMK-3	893	79.8%	66.2%	-	-	2
MoS ₂ /N-Carbon	1299	46.7 %	42.7 %	38 %	33.1 %	3
MoS ₂ /C	820	62.2 %	55.7 %	-	-	4
MoS ₂ /C	944	80.7%	75.3%	61%	-	5
MoS ₂ /N-rGO film	1109	78 %	70.8 %	64 %	-	6
rGO/MoS ₂ /N-rGO	770	76.5 %	68.6 %	-	-	7
MoS ₂ / rGO	1077	82.6 %	-	-	-	8
MoS ₂ @carbon	1110	65.3 %	54.1 %	40.5 %	-	9
MoS ₂ /graphene	825	69.2%	-	-	-	10
MoS ₂ /C	1127	78 %	62.9 %	42.6 %	22.2 %	11
MoS ₂ /graphene	854	73%	-	51.1%	38.8%	12
MoS ₂ /TiO ₂	990	70.7 %	-	57.1 %	-	13
nanosheet						
MoS ₂ /Carbon	900	66.7 %	50.5 %	-	-	14
MoS ₂ /C	900	77.8%	-	-	-	15
MoS ₂ /C	653	78.5 %	67.3 %	51.2 %	-	16
MoS ₂ @MoO ₃	929	41.3 %	-	-	-	17
MoS ₂ /N-C	840	83.7 %	76.7 %	71.4 %	53.9 %	This
						work

Table S1. Li-ion storage comparison of MoS₂-based materials.

References

- 1. S. Wang, B. Y. Guan, L. Yu and X. W. D. Lou, Adv Mater, 2017, 29, 1702724.
- X. Xu, Z. Fan, X. Yu, S. Ding, D. Yu and X. W. D. Lou, *Adv. Energy Mater.*, 2014, 4, 1400902
- 3. Z. Chen, H. Xie, L. Hu, M. Chen and L. Wu, J. Mater. Chem. A, 2017, 5, 22726-22734.
- 4. R. Zhou, J.-G. Wang, H. Liu, H. Liu, D. Jin, X. Liu, C. Shen, K. Xie and B. Wei, *Materials*, 2017, **10**, 174.
- 5. Y. Wang, L. Yu and X. W. D. Lou, Angew. Chem. Int. Ed., 2016, 55, 7423 –7426.
- 6. T. T. Shan, S. Xin, Y. You, H. P. Cong, S. H. Yu and A. Manthiram, *Angew. Chem. Int. Ed.*, 2016, **128**, 12975-12980.
- B. Chen, Y. Meng, F. He, E. Liu, C. Shi, C. He, L. Ma, Q. Li, J. Li and N. Zhao, *Nano Energy*, 2017, 41, 154-163.
- 8. Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv and K. Swierczek, *ACS Nano*, 2016, **10**, 8526-8535.
- 9. Y. Pan, J. Zhang and H. Lu, *Chemistry*, 2017, 23, 9937-9945.

- Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen and J. Y. Lee, J. Mater. Chem. A, 2013, 1, 2202-2210
- 11. J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao and C. He, *ACS Nano*, 2015, **9**, 3837-3848.
- 12. C. Zhu, X. Mu, P. A. v. Aken, Y. Yu and J. Maier, *Angew. Chem. Int. Ed.*, 2014, **53**, 2152–2156.
- 13. Y. Zhou, Y. Liu, W. Zhao, F. Xie, R. Xu, B. Li, X. Zhou and H. Shen, *J. Mater. Chem. A*, 2016, **4**, 5932-5941.
- 14. J.-G. Wang, R. Zhou, D. Jin, K. Xie and B. Wei, *Electrochim. Acta*, 2017, **231**, 396-402.
- 15. L. Zhang, H. B. Wu, Y. Yan, X. Wang and X. W. D. Lou, *Energy Environ. Sci.*, 2014, **7**, 3302-3306.
- 16. Y. Zhang, T. He, G. Liu, L. Zu and J. Yang, Nanoscale, 2017, 9, 10059-10066.
- 17. H. Liu, X. Chen, L. Deng, M. Ding, J. Li and X. He, *J. Mater. Chem. A*, 2016, **4**, 17764-17772.