Supplementary Materials

Hexagonal Co₃O₄ anchored reduced graphene oxide sheets for highperformance supercapacitors and non-enzymatic glucose sensing[†]

A.T. Ezhil Vilian^a, Bose Dinesh^b, Muruganantham Rethinasabapathy^c, Seung-Kyu Hwang^c, Chang-Soo Jin^d, Yun Suk Huh^{*, c} Young-Kyu Han^{*, a}

^aDepartment of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea. *E-mail: ykenergy@dongguk.edu (Y.-K. Han)

^bNano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore - 632 014, Tamil Nadu, India

^cDepartment of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea. *E-mail: yunsuk.huh@inha.ac.kr (Y.S. Huh)

^dEnergy Storage Lab., Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong, Daejeon, 305-343, Republic of Korea

Fig. S1. Adsorption-desorption isotherms of GO-Co₃O₄ and Co₃O₄.

Fig. S2. TEM images of (a) Co_3O_4 and (b) RGO- Co_3O_4 sheets at different magnifications.

Fig. S3. (a) Galvanostatic charge-discharge curves of RGO-Co₃O₄ at a various mass loadings (ad; 0.2, 0.6, 1.3 mg cm⁻²) at 4 A g⁻¹.

Fig. S4. A Plot between specific capacitance and respective cycles of RGO- Co_3O_4 at an applied current density of 4A/g.

Fig. S5. CVs obtained for 4 mM glucose at different electrodes in 0.1 M KOH at a scan rate of 50 mV s^{-1} .

Fig. S6. Amperometric i-t response at RGO-Co₃O₄ modified electrode upon addition of 1 μ M of glucose,Sucrose, Fructose,D-Mannose,glutathione, ascorbic acid,uric acid, D-maltose, dopamine, 4-nitrophenol, D-Lactose, vanillin, tyrosine and 500 μ M of K⁺, Na⁺ and Mg²⁺ to glucose aqueous solutions into continuously stirred N₂ saturated KOH solution (Applied potential: +0.35 V).

Fig. S7. Long-term stability of RGO-Co₃O₄ sensor measured in 1 mM glucose solution for 25 days.

Electrode Material	Linear range (µM)	LOD (µM)	Reference
CuCo ₂ O ₄	up to 320	5	1
NiCo ₂ S ₄	1-664	1.2	2
MnCo ₂ O ₄	20-100	3.2	3
NiOHSs-RGO-NF	0.6246-10,500	0.03	4
NiO/Pt/ERGO	50-5660	0.2	5
RGO-Co ₃ O ₄	1-500	0.4	This work

Table S1 Comparisons of the proposed RGO- Co_3O_4 performance with the previous report non-enzymatic glucose sensors.

References

- 1. S. Liu, K. Hui and K. Hui, ACS Appl. Mater. Interfaces, 2016, 8,3258-3267.
- 2. P. K. Kannan, C. Hu, H. Morgan and C. S. Rout, *Chem Asian J*, 2016, **11**, 1837-1841.
- 3. K. K. Naik, R. T. Khare, M. A. More, D. J. Late and C. S. Rout, *RSC Adv.*, 2016, **6**, 29734-29740.
- 4. P. Lu, J. Yu, Y. Lei, S. Lu, C. Wang, D. Liu and Q. Guo, Sens. Actuators, B, 2015, 208, 90-98.
- 5. M. Li, X. Bo, Z. Mu, Y. Zhang and L. Guo, Sens. Actuators, B, 2014, **192**, 261-268.