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Fig. S1. SEM image and corresponding Dynamic Light Scattering result of SiO2 nanoparticles 

prepared by traditional Stöber-Fink-Bohn method.
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Fig. S2. Schematic illustration of the production of S-CTs and S-H-HCSs@CT.

Fig. S3. Scheme models and related cross-sectional SEM images of confined assembled 

structure of SiO2 in AAO a) α = 3.33 (α = dc/ds, dc means the AAO channel diameter, ds 

means the diameter of the SiO2 NPs.)
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Fig. S4. Schematics of a) CTs and b) H-HCSs@CT. TEM and SEM images c) and e) show 

bare CTs. TEM and SEM images d) and f) show H-HCSs@CT with mesopores on the CT 

surface. 
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Fig. S5. a) High-resolution C1s XPS spectra of I-HCSs@CT; b) Schematic model of 

functional groups in I-HCSs@CT.

Fig. S6. SEM images of various products: a) S-I-HCSs@CT, b) S-H-HCSs@CT and c) S-CTs.
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Fig. S7. a) Nitrogen adsorption/desorption isotherms of S-I-HCSs@CT; d) Pore size 

distribution of S-I-HCSs@CT.

Fig. S8. Discharge/charge voltage profiles of a) S-CTs and b) S-H-HCSs@CT at 0.2C.
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Fig. S9. CV profiles of S-I-HCSs@CT at a scan rate of 0.5 mV s−1.

In the first cathodic scan, there are two well-defined reduction peaks at 2.28 and 2.01 V, 

corresponding to the multistep reduction mechanism of elemental sulfur. The first peak is the 

transition from elemental S to long-chain polysulfides (Li2SX, 4 < X ≤ 8); the latter is 

associated with further reduction of the higher polysulfide species (Li2SX, 4 < X ≤ 8) to the 

lower polysulfide species (Li2SX, X ≤ 8). In the anodic scan, there is a shoulder peak at ≈2.39 

V and a strong, broader peak at 2.43 V. They are associated with the reverse reactions in the 

charging stage. In the second anodic scan, the two anodic peaks shift to lower potentials at ≈ 

2.36 and ≈ 2.41 V.
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Fig. S10. Digital images of sealed vials with a lithium polysulfides solution (Li2S6 dissolved 

in DOL/DME solvents): a) 0.5 h and b) 4h, after the addition of CTs, H-HCSs@CT and I-

HCSs@CT powders.

In Fig. S10a and b, the color of Li2S6 solution changed to light yellow after mixing with 

I-HCSs@CT for 0.5 h, and the solution became almost colorless after 4 h, indicating the 

strong interaction between I-HCSs@CT and polysulfides. 
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Fig. S11. a) The electrode films of S-CTs, S-H-HCSs@CT and S-I-HCSs@CT cells after 100 

cycles, immersing in 5 mL DOL solvent after 1h. Separators from coin cells after 100 cycles 

of b) S-CTs, c) S-H-HCSs@CT and d) S-I-HCSs@CT.

In Fig. S11, the DOL solution contained the S-H-HCSs@CT and S-CTs electrode and 

the corresponding separator show much deeper “yellow” color than the S-I-HCSs@CT 

electrode, indicating the I-HCSs@CT host has much stronger interaction with polysulfides to 

restrict their dissolution into the organic electrolyte.
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Fig. S12. a) Nyquist plots of S-I-HCSs@CT, S-H-HCSs@CT and S-CTs after the 3rd cycle. b) 

Nyquist plots of S-I-HCSs@CT before and after 500 cycles at 0.5 C.

Compared with S-CTs, S-I-HCSs@CT and S-H-HCSs@CT has a smaller semicircle, 

indicating a lower charge transfer resistance (Rct) at the electrode interface. The positive 

effect of HCSs in S-I-HCSs@CT accounts for better high-rate electrochemical performances 

than S-CTs.
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Fig. S13 Electrical resistivity of S-I-HCSs@CT, S-H-HCSs@CT and S-CTs.

Fig. S14. Schematic diagram of the mechanism for reversible electrochemical reaction of S-

CTs.
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Fig. S15. Schematic diagram of the mechanism for reversible electrochemical reaction of S-

H-HCSs@CT.
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Fig. S16. Cross section SEM images of a) S-CTs, b) S-H-HCS@CT and c) S-I-HCSs@CT 

after 100 charge/discharge cycles. Compared with the volume change of S-CTs (35.09 μm) 

and S-H-HCS@CT (24.61 μm)，the S-I-HCSs@CT show smaller volume change (18.15 μm).



13

Table S1. A comparison of various carbon-based sulfur host materials for lithium sulfur 

batteries.

Sulfur host materials

Sulfur 

loading 

mass

Capacity

(mAh g-1)

Cycling 

performance

(mAh g-1)

Rention Ref.

Hollow polymer spheres /
1179

(0.1 C)

573

(0.5 C, 1000 cycles)
63.7% 1

Hollow carbon spheres 68.1%
1198

(0.2 C)

628

(0.5 C, 200 cycles)
69.8% 2

Disordered

carbon nanotubes
59.3%

1543

(0.1 C)

713

(0.1 C, 100 cycles)
46.3% 3

Hollow carbon nanofiber 78.6%
1403

(0.2 C)

730

(0.2 C, 150 cycles)
52.1% 4

N-doped Hollow carbon 

spheres
/

1126

(0.2 C)

1012

(0.2 C, 100 cycles)
89.9% 5

Double-Shelled Hollow 

Carbon Spheres
64.1%

1012

(0.1 C)

794

(0.1 C, 100 cycles)
78.5% 6

Holey carbon nanotube 47.4%
1183

(0.2 C)

943

(0.5 C, 200 cycles)
82.0% 7

Graphene oxide /
1327

(0.02 C)

989

(0.1 C, 55 cycles)
67.1% 8

Reduced graphene oxide /
1573

(0.1 C)

912

(1 C, 500 cycles)
61.9% 9

MnO2 filling hollow carbon 

nanofibers
71.2%

1214

(0.05 C)

736

(0.5 C, 300 cycles)
79.7% 10

Wrapped graphene 70.1%
700

(0.1 C)

600

(0.5 C, 140 cycles)
74.7% 11

Porous hollow carbon / 1186 991 71.4% 12
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(0.1 C) (0.5 C, 100 cycles)

Ordered Mesoporous 

Carbon Nanoparticles
70.0%

1163

(1C)

845

(1 C, 100 cycles)
72.6% 13

Multichannel Carbon

Nanofiber
80.0%

1385

(0.2 C)

1013

(0.2 C, 300 cycles)
72.7% 14

Tube-in-tube carbon 

nanotube
71.2%

1273

(0.5 A g-1)

647

(2 A g-1, 200 cycles)
58.1% 15

Sphere-in-tube carbon 

nanostructures
72.1%

1426

(0.1 C)

746

(0.5 C, 500 cycles)
80.4%

This 

work

References

[1] W.Y. Li, G.Y. Zheng, Y. Yang, Z. W. Seh, N. Liu, Y. Cui, Proc. Natl. Acad. Sci. U.S.A., 

2013, 110, 7148-7153.

[2] W.D. Zhou, Y.C. Yu, H. Chen, F.J. DiSalvo, H.D. Abruña, J. Am. Chem. Soc., 2013, 

135, 16736-16743

[3] J.C. Guo, Y.H. Xu, C.S. Wang, Nano Lett., 2011, 11, 4288-4294

[4] G.Y. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Nano Lett., 2011, 11, 4462-4467

[5] W.D. Zhou, C.M. Wang, Q.L. Zhang, H.D. Abruña, Y. He, J.W. Wang, S.X. Mao, X.C. 

Xiao, Adv. Energy Mater., 2015, 5, 1401752.

[6] C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W.D. Lou, Angew. Chem. Int. Ed., 2012, 

124, 9730-9733

[7] Y. Zhou, C.G. Zhou, Q.Y. Li, C.J. Yan, B. Han, K.S. Xia, Q. Gao, J. Wu, Adv. Mater., 

2015, 27, 3774-3781

[8] L.W. Ji, M.M. Rao, H.M. Zheng, L. Zhang, Y.C. Li, W.H. Duan, J.H. Guo, E.J. Carins, Y. 

G. Zhang, J. Am. Chem. Soc., 2011, 133, 18522-18525

[9] P.T. Xiao, F.X. Bu, G.H. Yang, Y. Zhang, Y.X. Xu, Adv. Mater., 2017, 29, 1703324.

[10] Z. Li, J.T. Zhang, X.W.D. Lou, Angew. Chem. Int. Ed., 2015, 54, 12886-12890



15

[11] H.L. Wang, Y. Yang, Y.G. Liang, J.T. Robinson, Y.G. Li, A. Jackson, Y. Cui, H.J. Dai, 

Nano Lett., 2011, 11, 2644-2647

[12] N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Angew. Chem. Int. Ed., 

2011, 123, 6026-6030

[13] H. Ye, Y.X. Yin, S. Xin, Y.G. Guo, J. Mater. Chem. A, 2013, 1, 6602-6608

[14] J.S. Lee, W. Kim, J. Jang, A. Manthiram, Adv. Energy Mater., 2017, 7, 1601543.

[15] Y. Zhao, W.L. Wu, J.X. Li, Z.C. Xu, L.H. Guan, Adv. Mat., 2014, 26, 5113-5118.


