Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Highly stable lithium metal battery applied three-dimensional mesh structure interlayer

Hyunjin Kim, Yong Jun Gong, Jeeyoung Yoo,* and Young Sang Kim*

Table S1 Properties of stainless steel mesh

304 Stainless Steel Meshed Disc (SSM)

Material	Stainless Steel. Purity > 99.9 %				
Diameter	15 mm				
Thickness	0.15 mm				

Stainless Steel	С	Si	Mn	Р	S	Ni	Cr
SUS 304	0.08	1.00	2.00	0.045	0.03	8.00~10.50	18.00~20.00

Figure S1. SEM image of Cu foil

Figure S2. The voltage profile of half-cell test during initialization process. The batteries were first cycled at 0–1 V (vs. Li⁺/Li) at 50 μ A for five cycles for initialization to remove surface contaminations and stabilize the interface.

Figure S3. Schematic illustrations of half-cell tests.

Figure S4. Schematic illustrations of symmetrical cell tests.

Figure S5. Symmetrical cell tests. (a) The voltage profile with the bare Li metal(black) and Li/SSM(red) electrode between 200 hours and 210 hours at 1 mA cm⁻² (b) The voltage profile with the bare Li metal(black) and Li/SSM(red) electrode between 200 hours and 210 hours at 5 mA cm⁻²

Figure S6. The voltage hysteresis in symmetric Li/SSM cells

Figure S7. Cyclability of LiFePO₄/Li cell.

Figure S8. Resistance of stainless steel mesh

Figure S9. The voltage hysteresis at 1mA cm⁻² with different mesh size

	Coulombic efficiency at 1mAh	Voltage range of symmetrical cell at 1mA cm ⁻²	Voltage range of symmetrical cell at 5mA cm ⁻²	Need of current collector
This work	98.35 % (Without additive)	-0.015 V ~ 0.015 V	-0.025 V ~ 0.025 V	Х
Adv. Mater. 2016, 28, 6932–6939	97 % (Without additive)	-0.05 V ~ 0.05 V	Х	0
Adv. Funct. Mater. 2017, 27, 1606422	93.8 % (With additive, 1 wt% LiNO ₃)	-0.2 V ~ 0.2 V	Х	Х
Adv. Mater. 2017, 29, 1700389	98 % (With additive, 1wt% LiNO ₃)	-0.04 V ~ 0.04 V	Х	0
Adv. Mater. 2016, 28, 2888-2895	97 % (With additive, 2 wt% LiNO ₃)	Х	Х	Х

 Table S2.
 The electrochemical stability comparison.