Electronic Supplementary Information (ESI)

Alumina anchored $\mathrm{CQDs} / \mathrm{TiO}_{2}$ nanorods by atomic layer deposition for efficient photoelectrochemical water splitting under solar light

Min Feng, ${ }^{a, b}$ Ying Liu, ${ }^{a,{ }^{*}}$ Ning Wei, ${ }^{a}$ Shaochen Ma, ${ }^{a}$ Zhaoxia Li, ${ }^{b}$ Hongguang Li, ${ }^{b, *}$ Shougang Chen, ${ }^{a}$ Jian Liu, ${ }^{b, c}$ Daoai Wang ${ }^{b, c, *}$
${ }^{\text {a }}$ Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
${ }^{\mathrm{b}}$ State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
${ }^{\text {c }}$ Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
*Corresponding Author. E-mail: liuyingwda@ouc.edu.cn; wangda@licp.cas.cn

Fig. S1 The schematic diagram of the preparation process of carbon quantum dots (CQDs).

Fig. S2 I-V characteristics between FTO substrate and (a) $\mathrm{TiO}_{2} \mathrm{NRs}$ (R) and (b) $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{CQDs} / 3 \mathrm{D}-\mathrm{TiO}_{2} \mathrm{NRs}(\mathrm{Al}-\mathrm{C} / 3 \mathrm{D}-\mathrm{R})$.

Fig. S3 XRD patterns of Rutile TiO_{2} NRs (R); 3D-TiO ${ }_{2}$ NRs (3D-R); CQDs/3D-TiO ${ }_{2}$ NRs (C/3D-R) and CQDs/3D-TiO 2 NRs with $5 \mathrm{~nm} \mathrm{Al}_{2} \mathrm{O}_{3}$ layer (Al-C/3D-R).

Fig. S4 High resolution XPS spectra of Ti $2 \mathrm{p}(\mathrm{a}, \mathrm{b})$ and $\mathrm{O} 1 \mathrm{~s}(\mathrm{c}, \mathrm{d})$ of TiO_{2} NRs (R) and 3D-TiO NRs (3D-R).

Fig. S5 Pictures of TiO_{2} NRs (R), 3D-TiO 2 NRs (3D-R), $\mathrm{CQDs} / \mathrm{TiO}_{2}$ NRs (C/R) and $\mathrm{CQDs} / 3 \mathrm{D}-\mathrm{TiO}_{2} \mathrm{NRs}(\mathrm{C} / 3 \mathrm{D}-\mathrm{R})$ from left to right.

Fig. S6 $J-V$ curves of TiO_{2} NRs (R) and $\mathrm{CQDs} / \mathrm{TiO}_{2} \mathrm{NRs}(\mathrm{C} / \mathrm{R})$.

Fig. S7 Raman spectra of TiO_{2} NRs (R), 3D-TiO 2 NRs (3D-R), $\mathrm{CQDs} / \mathrm{TiO}_{2}$ NRs (C/R) and CQDs/3D-TiO ${ }_{2}$ NRs (C/3D-R).

Fig. S8 IPCE spectra (from 440 nm to 500 nm) of $3 \mathrm{D}-\mathrm{TiO}_{2}$ NRs (3D-R); CQDs/3D-TiO 2 NRs (C/3D-R) and CQDs/3D-TiO 2 NRs with $5 \mathrm{~nm} \mathrm{Al}_{2} \mathrm{O}_{3}$ layer (Al-C/3D-R).

Fig. S9 The color change of $\mathrm{CQDs} / 3 \mathrm{D}-\mathrm{TiO}_{2}$ NRs nanocomposites before and after PEC measurements.

Fig. S10 The color change of $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{CQDs} / 3 \mathrm{D}-\mathrm{TiO}_{2}$ NRs nanocomposites before and after PEC measurements.

$\mathbf{C}[\%]$	$\mathbf{O}[\%]$	$\mathbf{N}[\%]$	$\mathbf{H}[\%]$
45.34	34.28	16.72	3.66

Table S1 Element analysis of CQDs.

