Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting information

Nitrogen- and Sulfur-Enriched Porous Carbon from Waste Watermelon Seeds for High-Energy, High-Temperature Green Ultracapacitors

Ranjith Thangavel^a, Aravindaraj Govindaraj Kannan^b, Rubha Ponraj^b, Vigneysh Thangavel^c, Dong-Won Kim^b, and Yun-Sung Lee^{a,*}

^a Faculty of Applied Chemical Engineering, Chonnam National University, Gwang-ju 500-757, Republic of Korea.

^b Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea. ^c School of Electrical and Electronics Engineering, SASTRA University, Thanjavur, India

E-mail address: leeys@chonnam.ac.kr (Y.S. Lee)

Fig. S1 TGA curve of dried watermelon seed

Fig. S2 (a)-(b) FE-SEM images of NS-WDC, and (c)-(d) TEM images of WDC

Fig. S3 (a) XRD patterns of WDC obtained at different temperatures, (b) XRD patterns of WDC (800 °C) and NS-WDC, (c) N₂ adsorption desorption isotherm of NS-WDC, and (d) Raman spectrum of WDC obtained at different temperatures,

Fig. S4 CD curve of WDC in three electrode configuration at 1 A g^{-1} .

Fig. S5 (a) CV traces of WDCs, (b) CV traces of NS-WDCs

Fig. S6 Rate performance WDCs synthesized at different temperatures

Fig. S8 (a) N₂ adsorption/desorption isotherm of CAC, Inset: Micro Pore size distribution, and (b) BJH pore size distribution

Fig. S8 Effect of porous carbon to thio urea ratio on specific capacitance

Fig. S9 Contact angle measurements with NaClO₄ in EC:DMC (a) WDC, and (b) NS-WDC electrodes

Fig. S10 CD curves of NS-WDC at 55 $^{\rm o}{\rm C}$

Fig. S12 Nyquist plots of NS-WDC at 25 $^{\rm o}C$, and 55 $^{\rm o}C$

	Elemental analysis					
Sample	C (wt%)	O (wt%)	N (wt%)	H (wt%)	S (wt%)	
WDC	82.9	13.11	1.85	0.24	0.07	
NS-WDC	81.1	10.01	3.59	0.28	3.31	

Table S1. Bulk composition of WDC and NS-WDC by elemental analysis

	XPS Analysis				
Sample	C (wt%)	O (wt%)	N (wt%)	S (wt%)	
WDC	81.43	15.66	2.9	0.11	
NS-WDC	80.49	12.07	4.13	3.31	

Table S2. Surface composition of WDC and NS-WDC by XPS

Carbon : Thio urea	Elemental analysis (NS-WDC)				
	C (wt%)	O (wt%)	N (wt%)	H (wt%)	S (wt%)
1:0.5	82.1	11.42	2.89	0.25	1.65
1:1	81.1	10.01	3.59	0.28	3.31
1:2	81.0	9.89	4.46	0.26	2.39

 Table S3. Bulk elemental composition of NS-WDC synthesized under different carbon : thio urea ratio