Supporting Information

Highly dispersed Zn nanoparticles confined in nanoporous carbon network: promising anode materials for sodium and potassium ion batteries

Chunliu Yan,^{ab} Xin Gu,*^a Li Zhang,^a Ying Wang,^a Liting Yan,^a Dandan Liu,^a Liangjun Li,^a Pengcheng Dai,^a and Xuebo Zhao*^{ab}

a. Research Center of New Energy Science and Technology, Research Institute of Unconventional Oil & Gas and Renewable Energy, China University of Petroleum (East China), Qingdao, 266580, P. R. China. E-mail: guxin@upc.edu.cn

b. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering,
China University of Petroleum (East China), Qingdao, 266580, P. R. China. E-mail:
zhaoxuebo@upc.edu.cn

Experimental section

Synthesis of zeolitic imidazolate framework-8 (ZIF-8)

Firstly, Zn $(NO_3)_2 \cdot 6H_2O$ (5.95 g) and 2-methylimidazole (6.57 g) were each dissolved in anhydrous methanol (200 ml). Secondly, the two solutions were mixed, stirred for 0.5 h, and aged at 25 °C for 24 h. Finally, ZIF-8 precursor was collected by centrifuging, washing with anhydrous methanol, and drying under vacuum at 80 °C for 12 h.

Synthesis of highly dispersed Zn nanoparticles confined in nanoporous carbon network (ZNP/C)

ZNP/C was achieved by calcining ZIF-8 precursor at a specific temperature for 3 h in N₂ flow at a heating rate of 1 °C min⁻¹. The ZNP/C composites obtained at 550 °C, 600 °C, 650 °C and 700 °C were denoted as ZNP/C-550, ZNP/C-600, ZNP/C-650 and ZNP/C-700, respectively. For comparasion, nanoporous carbon material was also synthesized by treating ZNP/C-600 with hydrochloric acid for several hours at 60 °C and denoted as NPC-600.

Material characterization

X-ray diffraction (XRD) was conducted on an X-ray diffractometer (Bruker D8 Adv., Germany). Raman spectrum was measured by a Raman spectrometer (NEXUS 670, USA). SEM images were collected by a scanning electron microscope (JSM 6700F, Japan). TEM images and energy-dispersive X-ray spectroscopy (EDX) were performed on a transmission electron microscope (JEM 2100, Japan). X-ray photoelectron spectroscopy (XPS) was performed on an X-ray photoelectron spectroscopy (XPS) was performed on an X-ray photoelectron spectrometer (ESCALAB 250, USA). N₂ sorption measurements were measured at 77 K by Quadrasorb SI. Nonlocal Density Functional Theory (NLDFT) and Brunauer-Emmett-Teller (BET) methods were utilized to study the pore structure and surface area of ZNP/C composites and NPC-600.

Electrochemical measurements

Working electrodes were made by active materials, super P and sodium carboxy methyl cellulose (mass ratio, 8:1:1). The average loading density of active materials was ~1.0 mg cm⁻². Na half cells were assembled by using sodium foil as counter electrode, 1 M NaClO₄ in EC/DMC (volume ratio, 1:1) with 2 wt% FEC as electrolyte, and glass fiber (Whatman GF/D) as separator. For the assembling of K half cells, potassium foil was employed as counter electrode, and 0.8 M KPF₆ in EC/DEC (volume ratio, 1:1) was utilized as electrolyte. Cyclic voltammetry was carried out on an electrochemical workstation (CHI760E, China) in the potential range of 0.01-3.0 V (vs. Na/Na⁺ or K/K⁺). Galvanostatic cyclings were relized at curent densities of 0.1-2 A g⁻¹ in the potential range of 0.01-3.0 V (vs. Na/Na⁺ or K/K⁺) on a battery cycler (LAND CT-2001A).

Figure S1 XRD patterns of as-prepared ZIF-8 and simulated ZIF-8.

Figure S2 SEM images of (a) ZNP/C-550, (b) ZNP/C-650 and (c) ZNP/C-700.

Figure S3 SEM image of ZIF-8 precursor.

Figure S4 TG curve of ZNP/C-600 at a heating rate of 10 °C min⁻¹ in air.

Figure S5 (a, c, e) N_2 sorption isotherms and (b, d, f) NLDFT pore-size distribution

curves of ZNP/C-550, ZNP/C-650 and ZNP/C-700.

Figure S6 Cyclic voltammograms of ZNP/C-550, ZNP/C-650, ZNP/C-700 and NPC-

600 between 0.01 and 3.0 V (vs. Na/Na⁺) at a scanning rate of 0.2 mV s⁻¹.

Figure S7 Discharge/charge profiles of ZNP/C-600 at 1 A g⁻¹.

Anode material	Reversible capacity(mAh g ⁻ ¹)@cycle number	Current density(mA g ⁻¹)	Reference
carbon nanofibers	245@280	50	1
hollow carbon nanowires	206@400	50	2
hard carbon nanoparticles	260@200	50	3
Sulfur covalently bonded graphene	150@200	1000	4
N-doped graphene sheets	187.3@50	100	5
3D hollow porous carbon microspheres	313.8@100	100	6
Nitrogen-rich hard carbon	~204@1000	1000	7
Sb/rGO	173@150	500	8
Bi@C microsphere	123.5@100	100	9
ZNP/C-600	361@100 227@1000	100 2000	This work

Table S1 Carbonaceous and alloying materials for SIBs.

Anode material	Reversible capacity(mAh g ⁻ ¹)@cycle number	Current density(mA g ⁻¹)	Reference
Graphite	100@50	140	10
Soft carbon	118@200	279	11
Hard carbon	144@200	279	11
Reduced graphene oxide	130@175	20	12
Few-layered graphene	150@100	100	13
Activated carbon	100@100	200	14
Few-layered N- doped graphene	165.9@200	500	15
Sn/C composite	110@30	25	16
P/C composite	195.5@20	50	17
ZNP/C-600	200@100 145@300	100 500	This work

Table S2 Carbonaceous and alloying materials for PIBs.

- 1. Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen, K. L. Jungjohann, Y. Xu, Y. Zhu, D. Bigio and T. Zhu, *Nano letters*, 2014, 14, 3445-3452.
- Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang and J. Liu, *Nano letters*, 2012, 12, 3783-3787.
- L. Xiao, Y. Cao, W. A. Henderson, M. L. Sushko, Y. Shao, J. Xiao, W. Wang, M. H. Engelhard, Z. Nie and J. Liu, *Nano Energy*, 2016, 19, 279-288.
- X. Wang, G. Li, F. M. Hassan, J. Li, X. Fan, R. Batmaz, X. Xiao and Z. Chen, *Nano Energy*, 2015, 15, 746-754.
- 5. L.-L. Tian, S.-B. Li, M.-J. Zhang, S.-K. Li, L.-P. Lin, J.-X. Zheng, Q.-C. Zhuang, K. Amine and F. Pan, *ACS applied materials & interfaces*, 2016, **8**, 26722-26729.
- G. Zou, H. Hou, X. Cao, P. Ge, G. Zhao, D. Yin and X. Ji, *Journal of Materials Chemistry A*, 2017, 5, 23550-23558.
- R. R. Gaddam, A. H. F. Niaei, M. Hankel, D. J. Searles, N. A. Kumar and X. Zhao, *Journal of Materials Chemistry A*, 2017, 5, 22186-22192.
- 8. F. Wan, H.-Y. Lü, X.-H. Zhang, D.-H. Liu, J.-P. Zhang, X. He and X.-L. Wu, *Journal of Alloys and Compounds*, 2016, **672**, 72-78.
- F. Yang, F. Yu, Z. Zhang, K. Zhang, Y. Lai and J. Li, *Chemistry-A European Journal*, 2016, 22, 2333-2338.
- 10. Z. Jian, W. Luo and X. Ji, Journal of the American Chemical Society, 2015, 137, 11566-11569.
- 11. Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su and X. Ji, Advanced

Functional Materials, 2017, 27, 1700324.

- W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen, J. Dai, H. Lin, Y. Xu, F. Gu and V. Barone, *Nano letters*, 2015, 15, 7671-7677.
- 13. K. Share, A. P. Cohn, R. Carter, B. Rogers and C. L. Pint, ACS nano, 2016, 10, 9738-9744.
- 14. Z. Tai, Q. Zhang, Y. Liu, H. Liu and S. Dou, *Carbon*, 2017, **123**, 54-61.
- 15. Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang and Y. Qian, ACS applied materials & *interfaces*, 2016, **8**, 20682-20690.
- 16. I. Sultana, T. Ramireddy, M. M. Rahman, Y. Chen and A. M. Glushenkov, *Chemical communications*, 2016, **52**, 9279-9282.
- 17. W. Zhang, J. Mao, S. Li, Z. Chen and Z. Guo, *Journal of the American Chemical Society*, 2017, **139**, 3316-3319.