Supporting Information

Surface Chemistry Imposing Selective Reduction of CO₂ to CO over

Ta₃N₅/LaTiO₂N Photocatalyst

Lei Lu,^{a, ‡} Shaomang Wang,^{b,c ‡} Chenguang Zhou,^{a, ‡} Zhan Shi,^b Heng Zhu,^a Zhenyu Xin,^a Xiaohui Wang,^a Shicheng Yan^{*, a}, and Zhigang Zou^{a, b}

^aEco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093, P. R. China ^bJiangsu Key Laboratory for Nano Technology, Department of Physics, Nanjing University, Nanjing 210093, P. R. China ^cSchool of Environment and Safety Engineering, Changzhou University, Changzhou 213164 (P. R. China) [‡]These authors contributed equally to this work.

 $Corresponding \ author \ E-mail: \underline{yscfei@nju.edu.cn}$

Fig. S1. XRD patterns for as-prepared (a) $La_2Ti_2O_7$ and $LaTiO_2N$, and (b) $KTaO_3$ and Ta_3N_5 . SEM image of (c) $La_2Ti_2O_7$ and (d) $KTaO_3$.

Fig. S2. (a) XRD patterns and (b) UV-vis absorption spectra for $LaTiO_2N$ and Ta-doped $LaTiO_2N$. (c) Enlarged XRD patterns for $xTa_3N_5/LaTiO_2N$ (x = 0.1, 0.3, and 0.5).

Fig. S3. (a) UV-vis absorption spectra for $0.3Ta_3N_5/LaTiO_2N$ and mixtures of Ta_3N_5 and $LaTiO_2N$ with the same mole ratio. (b) La 3d XPS spectra for $LaTiO_2N$ and $0.3Ta_3N_5/LaTiO_2N$.

Fig. S4. Mott-Schottky plots for the (a) Ta_3N_5 and (b) $LaTiO_2N$. Electrolyte: 0.5 M Na_2SO_4 solution (pH 7). (c) The relative band positions for $Ta_3N_5/LaTiO_2N$.

The relative band positions of Ta₃N₅ and LaTiO₂N were analyzed by combining their Mott-Schottky (M-S) plots and UV-vis results. As shown in Fig. S4a, the evaluated flat band potential of the as-prepared Ta₃N₅ was about -0.018 V vs reversible hydrogen electrode (RHE), and the measured flat band potential of the LaTiO₂N was -0.132 V vs RHE (Fig. 4b). Normally, the CB bottom for an n-type semiconductor is about 0.2 V above the flat band potential.^[1,2] Then, the corresponding CB positions of the n-type Ta_3N_5 and $LaTiO_2N$ were, respectively, estimated to be -0.218 and -0.332 eV. Based on their band gaps calculated from the UV-vis results (Fig. 3a), the relative VB positions of the Ta₃N₅ and LaTiO₂N were deduced and given in Fig. S4c. Obviously, the composite materials showed a typical type- I heterojunction structure, in which the photogenerated electrons were expected to transfer from the CB of LaTiO₂N to Ta₃N₅, while the holes were followed by an opposite way. This indicated that the CO₂ reduction would actually take place on Ta₃N₅ surface. Here, it was noted that the measured CB and VB levels of LaTiO₂N were in consistent with the reported value,^[3] while the corresponding CB and VB energies of Ta₃N₅ were both lower than the previous reported value.^[4] This was possibly resulted from the high content of TaO_x species (13.1%) in the as-prepared Ta_3N_5 (Fig. 3e). Indeed, both the previous theoretical calculations and experimental results confirmed that the oxygen impurity contributed to the downshift of band position due to the lower energy of O 2p orbital than that of N 2p orbital, which composed the valance band of Ta₃N₅.^[5,6]

Fig. S5. (a) PL patterns and (b) according CO_2 reduction products for LaTiO₂N with different annealing time under air.

Fig. S6. (a) Ta 4f XPS peaks for Ta₃N₅ by nitriding KTaO₃ at 1223 K for 8 h under 500 mL/min NH₃. (b) CO₂ reduction products for Ta₃N₅ samples from KTaO₃ with different nitridation process. (c) N₂ adsorption-desorption isotherms for LaTiO₂N, Ta₃N₅, and $0.3Ta_3N_5/LaTiO_2N$ samples. (d) The CO₂ reduction products over KOH modified (020) Ta₃N₅ under the visible light irradiation for 8 h. The inset shows the FT-IR spectrum.

Fig. S7. (a) The adsorbed energy for CO on Ta_3N_5 (023) facet. The calculated energy for Ta_3N_5 (023) facet was -3528.7 eV. (b) CO₂ reduction products over polycrystalline Ta_3N_5 prepared by direct nitriding of Ta_2O_5 at 1123 K for 8 h under 500 mL/min NH₃. The inset in Fig. S7a shows the TEM image of polycrystalline Ta_3N_5 .

REFERENCES

- Y. Qi, S. Chen, M. Li, Q. Ding, Z. Li, J. Cui, B. Dong, F. Zhang and C. Li, *Chem. Sci.*, 2017, 8, 437.
- 2. S. Chen, S. Shen, G. Liu, Y. Qi, F. Zhang and C. Li, Angew. Chem. Int. Ed., 2015, 54, 3047.
- 3. E. Watanabe, H. Ushiyama and K. Yamashita, ACS Appl. Mater. Inter., 2017, 9, 9559.
- 4. T. Minegishi, N. Nishimura, J. Kubota and K. Domen, *Chem. Sci.*, 2013, **4**, 1120.
- 5. Y. He, J. Thorne, C. Wu, P. Ma, C. Du, Q. Dong, J. Guoa and D. Wang, *Chem*, 2016, **1**, 640.
- 6. J. Wang, T. Fang, L. Zhang, J. Feng, Z. Li and Z. Zou, J. Catal., 2014, **309**, 291.