Supporting information

Atomic Insight into the Structural Transformation and Anionic/Cationic Redox Reactions of VS₂ Nanosheets in

Sodium-Ion Batteries

Dashuai Wang^a, Yingying Zhao^a, Ruqian Lian^a, Di Yang^a, Dong Zhang^a, Xing Meng^a, Yanhui Liu^b, Yingjin Wei^{a,*} and Gang Chen^{a,*}

^a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130012, China.

^b Department of Physics, College of Science, Yanbian University, Yanji 133002, China.

*Corresponding author: yjwei@jlu.edu.cn (Y. J. Wei); gchen@jlu.edu.cn (G. Chen) Tel & Fax: 86-431-85155126

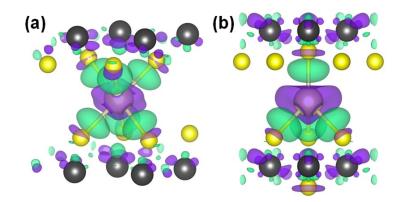
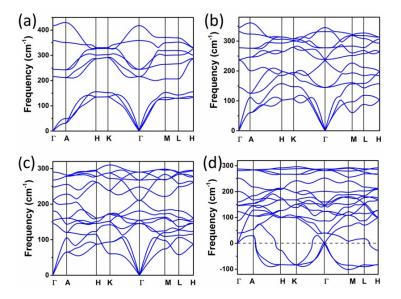



Fig. S1. Charge density difference of VS_2 with an isolated Na in an octahedral site (a) and in a tetrahedral site (b). Green, accumulation of electron density and blue, depletion of electron density.

Fig. S2. Phonon band dispersions of VS_2 (a), $Na_{1.0}VS_2$ (b), $Na_{2.0}VS_2$ (c), and $Na_{3.0}VS_2$ (d).

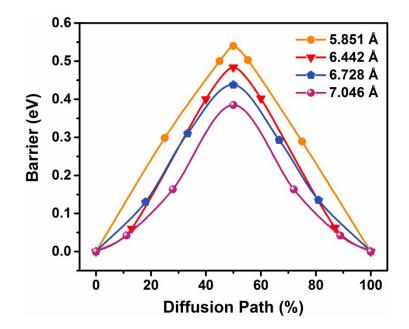
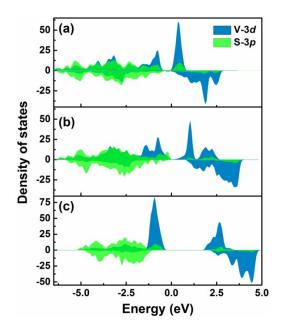



Fig. S3. Calculated diffusion barriers of Na in VS₂ along the $O \rightarrow O'$ pathway with different interlayer spacing.

Fig. S4. Partial density of states (PDOS) of V-3*d* and S-3*p* in VS₂ (a), $Na_{1.0}VS_2$ (b) and $Na_{2.0}VS_2$ (c).