Electronic Supplementary Information

Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as high active catalyst precursors for hydrogen storage in MgH₂⁺

Zeyi Wang^a, Zhuanghe Ren^a, Ni Jian^a, Mingxia Gao^a, Jianjiang Hu^b, Fang Du^b, Hongge Pan^a, Yongfeng Liu^{a,c*}

^aState Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
^bLaboratory for Energetics and Safety of Solid Propellants, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
^cKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University, Tianjin 300071, China

*Corresponding author Tel/Fax: +86 571 87952615 E-mail: mselyf@zju.edu.cn

Fig. S1 Reciprocal molar magnetic susceptibility as a function of the temperature for MIL-47. Antiferromagnetic behaviour was observed below Curie temperature (50 K).

Fig. S2 N_2 sorption isotherm curve of the prepared nano- V_2O_3 @C composite.

Fig. S3 A magnified view of XRD patterns for MgH₂-x wt% V₂O₃@C composites (x = 0, 9, 12) at $2\theta = 28-38^{\circ}$.

Fig. S4 V 2p XPS spectrum of milled MgH₂-9 wt% V₂O₃@C sample.

Fig. S5 Dehydrogenation peak temperatures obtained in the literature compared with our result.

Fig. S6 SEM images of as-milled MgH_2 (a) and MgH_2 -9 wt% $V_2O_3@C$ (b).

Fig. S7 XRD patterns of prepared nano- V_2O_3 (a) and isothermal dehydrogenation curves of MgH₂ with different additives ($V_2O_3@C, V_2O_3, V_2O_3/C$) at 250 °C (b).

Fig. S8 Isothermal hydrogenation curves of the milled MgH₂.

Fig. S9 TPD curves of MgH₂-9 wt% V₂O₃@C at different heating rates.

Fig. S10 Comparison of dehydrogenation curves of MgH_2 added with 9 wt% and 20 wt% $V_2O_3@C$.

Fig. S11 A magnified view of XRD patterns for MgH₂-20 wt% V₂O₃@C sample at different dehydrogenation stages.

Fig. S12 HRTEM image of dehydrogenated MgH₂-20 wt% V₂O₃@C sample.

Fig. S13 V 2p XPS spectra of MgH₂-20 wt% V₂O₃@C samples after the 1st hydrogenation (a) and 2nd dehydrogenation (b).