Heavy Metal Ion Remediation

Supporting Information (SI)

Aqueous "Polysulfide-ene" Polymerization for Sulfur-Rich Nanoparticles and Their Use in

Hyuksoo Shin,^a Jihee Kim,^b Dowan Kim,^a Viet Huu Nguyen,^b Sangwook Lee,^b Seunghee Han,^{b,*} J eewoo Lim,^{c,*} and Kookheon Char^{a,*}

^aSchool of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Repub lic of Korea

^bSchool of Earth Science and Environmental Engineering, Gwanju Institute of Science and Tech nology, Gwangju, 61005, Republic of Korea

^cDepartment of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea

1 Supporting Tables

	PS ₂ DVS	PS3DVS	PS4DVS
Glass Transition Temperature (T _g) (°C)	11.6	8.6	13.7
Zeta Potential (mV)	32.2	34.8	32.9
Size (nm)	223	300	233
Size Polydispersity (σ^2/d^2)	0.028	0.022	0.056

Table S1. Characterization of PS_nDVSs.

	PS ₂ DVS		PS ₃ DVS		PS ₄ DVS	
	Theoretical	Experimental	Theoretical	Experimental	Theoretical	Experimental
	Value (%)	Value (%)	Value (%)	Value (%)	Value (%)	Value (%)
Carbon	24.4	26.0	20.1	22.2	18.1	19.3
Hydrogen	3.9	4.4	3.3	3.7	2.8	3.3
Sulfur	56.1	52.2	62.2	59.3	65.9	64.5
Oxygen	15.6	17.4	14.6	14.8	13.2	12.9
Total	100	100	100	100	100	100

Initial Conc. (ppm)	PS ₂ DVS-SH	PS₃DVS-SH	PS₄DVS-SH	
	Equilibrium Conc. (ppm) (Standard Deviation)			
245	0.39 (0.34)	0.04 (0.52)	1.03 (0.64)	
454	0.75 (-)	0.575 (0.05)	0.93 (0.59)	
528	1.42 (13)	2.446 (102)	2.45 (5.20)	
1011	209 (27.08)	295.95 (3.75)	277.55 (5.30)	
2164	1333 (50.20)	1333.85 (8.70)	1319.3 (-)	
2823	2059 (1.20)	2060 (0.7)	2060 (0.70)	
4796	3863 (0.90)	4796 (-)	3841 (0.50)	

Table S3. Mercury ion sorption isotherm of PS_nDVS-SHs

Table S4. Mercury ion sorption performance of materials.

			Remaining Hg ²⁺
Adsorbend	$K_d (mL g^{-1})$	$q_{max} (mg g^{-1})$	Concentration
PS ₂ DVS-SH	2.2E7	9200	0.005 ppm
PAF-1-SH	5.76E7	1014	0.4 ppb
POP-SH	5.50E8	1216	<0.1 ppb
FMMS	3.40E5	505	0.7 ppb
Chalcogel-1	1.61E7	645	0.04 ppm
W-DR-N-MoS ₂	3.53E8	2563	0.2 ppb
Zr-DMBD	9.99E5	179	<0.01 ppm
68(W)	6.90E6	2173	0.45 ppm
TAPB-BMTTPA- COF	7.82E5	734	0.01 ppm
TPB-DMTP-COF- SH	3.23E9	4395	1.5 ppb
COF-S-SH	2.30E9	1359	<0.1 ppb

	Initial Conc. (ppb)	PS ₂ DVS-SH	PS₃DVS-SH	PS4DVS-SH	
		Equilibrium Conc. (ppb) (Removal Efficiency (%))			
Hg ²⁺	10770	11 (99.90)	9 (99.91)	4 (99.96)	
Mg ²⁺	12190	9797 (19.63)	10074 (17.36)	10182 (16.48)	
Zn ²⁺	14734	12733 (13.58)	11569 (21.48)	11664 (20.84)	
Na ⁺	11024	11576 (-5.00)	9562 (13.26)	9745 (11.60)	
K ⁺	11660	10450 (10.38)	10339 (11.33)	10207 (12.46)	
Ca ²⁺	8809	7051(19.96)	7545 (14.34)	8108 (7.96)	
Pb ²⁺	1224	475 (61.18)	266 (78.24)	17 (98.59)	
Cd ²⁺	12296	5314 (56.78)	3389 (72.44)	34 (99.73)	

Table S5. Ion selectivity tests for PS_nDVS -SH in mixed metal ion solution.

2 Supporting Figures

Figure S1. ¹H NMR spectra of divinyl sulfone and polysulfide with sodium sulfonate standard in D_2O for kinetic study of PS_nDVS .

Figure S2. SEM images of PS_nDVS synthesized with and without various surfactants; (a) without surfactant; (b) Triton X-100; (c) polyvinylpyrrolidone; (d) sodium dodecyl sulfate. Scale bars in SEM images are 1 μ m.

Figure S3. SEM image of PS₄DVS as synthesized (left), after dispersing in pH 3 solution for 24 hours (center), and after immersing in pH 12 solution for 24 hours (right).

PS₄DVS pH3, 24 hr

PS₄DVS pH12, 24 hr

Figure S4. (a) Adsorption isotherm of PS_2DVS ; (b) Langmuir isotherm of PS_2DVS .

Figure S5. SEM image of PS₄DVS-SH nanoparticles.

Figure S6. TGA of PS₄DVS and PS₄DVS-SH.

Figure S7. the Langmuir isotherm plots for the adsorption isotherms of PS₂DVS-SH, PS₃DVS-SH, and PS₄DVS-SH.

Figure S8. Mercury adhesion of PS4DVS-SH with and without TCEP at 5000 ppm Hg^{2+} solution. The adsorption was carried out for 24 hours at room temperature in acetate buffer at pH = 3.7.

Figure S9. The kinetic investigation of PS_2DVS -SH fitted with the pseudo-second-order kinetic model.

The kinetic investigation of PS_2DVS -SH under initial mercury ion concentration of 11.5 ppm were fitted with the pseudo-second-order kinetic model using equation S1, where k_2 (g mg⁻¹ min⁻¹) is the rate constant of pseudo-second-order adsoprtion, t is time, and q_t and q_e are the amount of mercury adsorbed at time t and equilibrium.

$$\frac{t}{q^t} = \frac{t}{q^e} + \frac{1}{K_2 {q_e}^2}$$
(S1)

An extremely high correlation coefficient (>0.9999) was obtained between time (t) and t/Q_t. In addition, the adsorption rate constant of pseudo-second-order adsorption k_2 was determined to be 0.08 g mg⁻¹ min⁻¹.

Figure S10. EDS images and spectra of PS₃DVS nanoparticles.

16

Figure S11. EDS images and spectra of mercury adsorbed PS₄DVS-SH nanoparticles before and after after iterative washing by DI water.

Figure S12. Hg 4f XPS spectra of mercury adsorbed PS₄DVS-SH.

Figure S13. Reusability test of PS₄DVS-SH at 50 ppm Hg²⁺.