Supporting Information

g-C₃N₄/MgO Nanosheets: Light-independent, Metal-poisoning-free Catalysts for the Activation of Hydrogen Peroxide to Degrade Organics

Lifa Ge,^a Ziling Peng,^b Wei Wang,^{*, a} Fatang Tan,^a Xinyun Wang,^a Bin Su,^{*, c} Xueliang Qiao,^a Po Keung Wong,^{*, d}

^{*a*} State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

^b Material and Engineering Structure Department, Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, China

^c Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia

^d School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China

Corresponding Author

*weiwang@hust.edu.cn
*bin.su@monash.edu
*pkwong@cuhk.edu.hk

Experimental Section

Preparation of physical mixture of g-C₃N₄ and MgO

Transferred 0.5 g of $g-C_3N_4$ and 0.5 g of MgO into a mortar, grinding to mix evenly. The mixture of $g-C_3N_4$ and MgO was obtained.

Preparation of g-C₃N₄/TiO₂ composites

Similar to the previous study,^[S1] 0.5 g of g-C₃N₄ was dispersed in 20 mL of ethanol by ultrasound irradiation for 20 minutes. Then, 0.5 g of TiO₂ nanoparticles (P25, Degussa) was added into the above mixture under stirring. After stirring for about 2h, the mixture was placed in a water bath at 50 °C until the ethanol was volatilized. The residue was dried in an oven at 80 °C for 12h, then transferred into a crucible (30 mL) with a lid, and covered with aluminum foil. After that, put the crucible into a muffle furnace, heating from room temperature to 450 °C with a heating rate of 10 °C/min and kept at 450 °C for 2 h. After cooling to room temperature, g-C₃N₄/TiO₂ composites were obtained.

Figures

Figure S1.Morphology characterizations of individual $g-C_3N_4$ nanosheets. a)SEM and b) TEM images of

g-C $_3N_4$ nanosheets. The nanosheets are smooth without rough structures.

Figure S2. High-resolution XPS spectra of a) C 1s and b) N 1s of individual g-C₃N₄nanosheets.

Figure S3. High-resolution XPS spectra of a) C 1s, b) O 1s and c) Mg 1s of individual MgO grains.

Figure S4. a) N_2 adsorption/desorption isotherms and b) pore-size distributions of individual g-C₃N₄, MgO and g-C₃N₄/MgO nanosheets.

Figure S5. High-resolution XPS spectra of a) C 1s, b) N 1s c) O 1s and d) Mg 1s of $g-C_3N_4/MgO$ after

treating in 100 mL of aqueous solution containing 0.3 mL of 30% $\rm H_2O_2.$

Figure S6. Changes of the solution pH after adsorption and degradation.

Figure S7. a) XRD patterns and b) FTIR spectra of fresh and used g-C₃N₄/MgO nanosheets.

Figure S8. Comparison of the catalytic performances of fresh g-C₃N₄/MgO and recovered g-C₃N₄/MgO for

MO degradation.

sample	BET Surface Area (m ² /g)	average pore diameter (nm)
g-C ₃ N ₄	8.1	38.3
MgO	110.1	14.3
g-C ₃ N ₄ /MgO	58.9	17.5

Table S1. BET surface areas and pore diameters of $g-C_3N_4$, MgO and $g-C_3N_4$ /MgO nanosheets

[S1] Zang, Y.; Li, L.; Xu, Y.; Zuo, Y.; Li, G. J. Mater. Chem. A 2014, 2, 15774-15780.