Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Novel WS₂/NbSe₂ vdW heterostructure as a ultrafast charging and discharging anode material for Lithium-ion batteries

Huating Liu¹, Zongyu Huang^{1,2,*}, Guang Wu¹, Yanbing Wu¹, Guanghui Yuan¹, Chaoyu He^{1,2}, Xiang Qi^{1,2}, Jianxin Zhong^{1,2,*}

1 School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, P. R. China

2 Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Xiangtan University,

Hunan 411105, P. R. China

^{*} Corresponding author: School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, P. R. China

E-mail address: zyhuang@xtu.edu.cn, jxzhong@xtu.edu.cn, jxzhong@xtu.edu.cn, jxzhong@xtu.edu.cn, jxzhong@xtu.edu.cn, jxzhong@xtu.edu.cn, jxzhong@xtu.edu.cn)

Figure S1: (a) Top and (b) side views of $WS_2/NbSe_2$ heterostructure with the AA staking. The red arrows indicate that the metal atoms in the upper layer are directly opposite the metal atoms in the lower layer, while the green ones indicate that the chalcogenide atoms in the upper layer are directly opposite the chalcogenide atoms in the upper layer are directly opposite the chalcogenide atoms in the lower layer.

Figure S2: (a) Top and (c) side views of the charge density difference of $WS_2/NbSe_2$ heterostructure; (b) top and (d) side views of the charge density difference of one Li insert into interlayer of $WS_2/NbSe_2$ heterostructure. The loss of electrons is indicated in blue and gain of electrons is indicated in yellow.

Figure S3: Considered the diffusion barrier and the shortest diffusion path $(T_{WI}/T_{Nb1}-H_{WS2}/H_{NbSe2}-T_{W2}/T_{Nb2})$ profiles for one Li atom adsorbed on the (a) WS2 monolayer and (b) NbSe2 monolayer.

System	Lattice constant (Å)	Lattice constant (Å)	References	
	Calculate	Theory		
WS_2	3.185	3.154	[1]	
NbSe ₂	3.337	3.481	[2]	
WS ₂ /NbSe ₂	3.352	-	This work	

Table S1: Calculated lattice parameters of WS_2 , $NbSe_2$ monolayers and $WS_2/NbSe_2$ heterostructure, previous theoretical values values are also shown for comparison.

Table S2: Calculated strain energy of WS₂, NbSe₂ monolayers and adhesive energy of WS₂/NbSe₂ heterostructure.

Strain energy (eV	V/unit-cell)	Adhesive energy (eV/unit-cell)
WS_2	NbSe ₂	WS ₂ /NbSe ₂
0.250	0.128	0.397

Table S3: The calculated interlayer distance between $WS_2/NbSe_2$ heterojunction before and after lithium atom intercalation.

Interlayer distance (Å) WS ₂ /NbSe ₂	Intrinsic	3.25
	$H_{WS2/NbSe2}$	3.27
	$T_{S\!/\!Nb}$	3.43

Table S4: The value of surface adsorption energy γ and binding energy E_b as the Li concentration $\Delta \mu$ for WS₂/NbSe₂ heterostructure.

$\Delta \mu$	γ (eV)	$E_{\rm b}({\rm eV})$
0.11	0.441	-3.19
0.33	0.372	-4.37
0.66	0.323	-4.45
1.00	0.268	-4.87

interlayer of WS2/NbSe2 heterostructure. System Path Energy barrier (eV) Diffusion length (Å) T_{W1} - H_{WS2} - T_{W2} 0.23 3.48 $WS_2/Li_{0.11}$ T_{W1} - T_{W2} 3.19 0.22 T_{Nb1} - H_{NbSe2} - T_{Nb2} 4.24 0.22 NbSe₂/Li_{0.11} T_{Nb1} - T_{Nb2} 0.20 3.51

0.19

0.18

3.84

3.40

Table S5: Considered the two diffusion paths and the corresponding diffusion barrier for one Li atom adsorbed on the WS₂, NbSe₂ monolayers, and insert into interlayer of WS₂/NbSe₂ heterostructure.

1 A. Kumar and P. K. Ahluwalia, Eur. Phys. J. B., 2012, 85, 186.

2 X. Lv, W. Wei, Q. Sun, B. Huang and Y. Dai, J. Phys. D., 2017, 50, 23.

 H_1 - $T_{S/Nb}$ - H_2

 H_1 - H_2

 $WS_2/Li_{0.11}/NbSe_2$