[Supporting Information]

Solution-Derived Glass-Ceramic Nal·Na₃SbS₄ Superionic Conductors for All-Solid-State Na-Ion Batteries

Kern Ho Park,^a Dong Hyeon Kim,^{a,b} Hiram Kwak,^a Sung Hoo Jung,^{a,b} Hyun-Jae Lee,^b Abhik Banerjee,^a Jun Hee Lee^b and Yoon Seok Jung^{*,a}

^a Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea ^b School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea

*E-mail: <u>yoonsjung@hanyang.ac.kr</u>

Supporting Experimental Methods

For the measurement of H₂S generated from Na₃PS₄ and 0.1Nal·0.9Na₃SbS₄, the SE powders were kept in a sealed container (2.6 L) with a water (2 mL) in an open vial. A small electric fan circulated an air in the container and the relative humidity was 60-80%. The amount of H₂S was measured using an H₂S sensor (SP2297, SENKO). The XPS data were collected with a monochromatic Al K_{α} source (1486.6 eV) at 72 W, 12 kV, and 6 mA using an X-ray photoelectron spectrometer (ThermoFisher).

Fig. S1 Nyquist plots at 30 °C for the solution-derived 0.1NaI·0.9Na₃SbS₄ prepared at 150 °C.

Fig. S2 XRD patterns for the solution-derived xNal·(1 - x)Na₃SbS₄ prepared at a) 200 °C and b) 300 °C.

Fig. S3 H₂S amount as a function of time for Na₃PS₄ and 0.1Na·0.9Na₃SbS₄ exposed in air.

Fig. S4 First two-cycle cyclic voltammetry curves for Ti/0.1NaI \cdot 0.9Na₃SbS₄/Na₃PS₄/Na₃Sn cells in the negative potential range (0.0-3.0 V (vs. Na/Na⁺)) and in the positive potential range (2.5-5.0 V (vs. Na/Na⁺)) at 30 °C. The solid and dashed lines are at first and second cycles, respectively. The scan rate was 20 mV s⁻¹. 30 mg of 0.1NaI \cdot 0.9Na₃SbS₄, 100 mg of Na₃PS₄, and 60 mg of Na₃Sn were used for the cells.

Fig. S5 HRTEM image of the solution-derived $0.1Nal \cdot 0.9Na_3SbS_4$ prepared at 150 °C and its corresponding FFT pattern. The spots in the FFT pattern correspond to Na_3SbS_4 .¹⁰

Fig. S6 a) XRD patterns of Na₃SbS₄ and Na_{3-x}SbS_{4-x}l_x (x = 0.10, nominal composition) prepared by the solid-state reaction at 550 °C. The DFT-calculated XRD pattern of Na_{3-x}SbS_{4-x}l_x (x = 0.112) is compared. Photographs of b) Na₃SbS₄ and c) Na_{3-x}SbS_{4-x}l_x (x = 0.1) powders.

Fig. S7 XPS spectra of a) Na 1s, b) Sb 3d, c) S 2p, and d) I 3d for the solution-derived xNaI·(1 – x)Na₃SbS₄ prepared at 200 °C. The spectrum of Na₃SbS₄ prepared by solid-state synthesis at 550 °C is compared.

Fig. S8 Activation energies of the Na⁺ conductivities for solution-derived xNal·(1 - x)Na₃SbS₄ prepared at 150, 200, or 300 °C.

Fig. S9 Rate capability results at 30 °C for FeS₂/(Na₃SbS₄/Na₃PS₄)/Na₃Sn all-solid-state cell using 0.1Nal·0.9Na₃SbS₄-coated FeS₂. a) Discharge capacities and b) charge-discharge voltage profiles varied by the current density. The amount of coated 0.1Nal·0.9Na₃SbS₄ was 20 wt%.

Fig. S10 Nyquist plots at 30 °C for Na₃Sn/Na₃PS₄/Na₃Sn cells as a function of storage time.