Electronic Supplementary Information

Au-Cd_{1-x}Zn_xS core-alloyed shell nanocrystals: boosting the interfacial charge dynamics by adjusting shell composition

Ying-Chih Pu^{a‡}*, Wei-Ta Chen^{b‡}, Mei-Jing Fang^b, Yu-Lin Chen^a, Kai-An Tsai^b,

Wei-Hao Lin^b and Yung-Jung Hsu^{b,c}*

^a Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan

^b Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

^c Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan

*Corresponding Author: Y.-C. Pu (ycpu@mail.nutn.edu.tw); Y.-J. Hsu (yhsu@cc.nctu.edu.tw)

[‡]These authors contributed equally.

(a)

Sum Spectrum	Element	Weight%	Atomic%
•	S K	11.75	37.99
	Cd L	39.31	36.26
	Au M	48.94	25.76
901			
0 2 4 6 8 10 Full Scale 444 cts Cursor: -0.100 (0 cts) keV	Totals	100.00	

(b)

Sum Sp	Element	Weight%	Atomic%
	S K	13.83	40.33
9	Zn K	3.22	4.61
	Cd L	43.93	36.55
	au M	39.01	18.52
J 2 4 6 8 Full Scale 368 cts Cursor -0.100 (0 cts)	Totals	100.00	

(c)

	Sum Spectrum	Element	Weight%	Atomic%
	10 - E	SK	14.63	32.47
P		Zn K	7.77	11.06
		Cd L	27.58	22.83
	8 6	Au M	50.02	33.63
D 2 4 6 Full Scale 531 cts Cursor: -0.100 (0 cts)	8 10 keV	Totals	100.00	

(d)

Sum Spe	Element	Weight%	Atomic%
T T	SK	10.93	34.46
9 👝	Zn K	9.19	14.20
	on Cd L	26.80	24.10
	🍯 Au M	53.08	27.24
D 2 4 6 8 Full Scale 531 cts Cursor: -0.100 (0 cts)	kev Totals	100.00	

Fig. S1 TEM-EDS analysis of (a) Au-CdS, (b) Au-Cd_{1-x}Zn_xS_a, (c) Au-Cd_{1-x}Zn_xS_b, and (d) Au-Cd_{1-x}Zn_xS_c.

Fig. S2 TEM-EDS elemental mapping taken on Au-Cd_{1-x}Zn_xS_c.

Fig. S3 TEM image of Au-Cd_{1-x}Zn_xS NCs prepared at 270°C for 1 hr.

Fig. S4 $(\alpha h v)^2$ vs. hv plots for Au-CdS and Au-Cd_{1-x}Zn_xS NCs for determination of apparent bandgap.

Fig. S5 Steady-state PL spectra for Au-CdS and Au-Cd_{1-x}Zn_xS NCs.

Fig. S6 XPS spectra of Au 4d for pure Au and Au- Cd_{1-x}Zn_xS_c.

Table S1 Calculation results of the mole fraction of ZnS for Au-CdS and Au-Cd_{1-x}Zn_xS NCs based on the TEM-EDS examinations.

	Mole fraction of Zn/Cd in precursor solution	Atomic ratio of Zn/Cd in Cd _{1-x} Zn _x S shell from TEM-EDS analysis
Au-CdS	0	0
Au-Cd _{1-x} Zn _x S_a	1.0 (Zn:Cd = 0.5:0.5)	0.13 (Zn:Cd = 0.11:0.89)
Au-Cd _{1-x} Zn _x S_b	4.9 (Zn:Cd = 0.83:0.17)	0.48 (Zn:Cd = 0.33:0.67)
Au-Cd _{1-x} Zn _x S_c	9.0 (Zn:Cd = $0.9:0.1$)	0.59 (Zn:Cd = 0.37:0.63)

Table S2 Comparison of SPR λ_{max} between experimental and theoretical results.

	Experimental SPR λ_{max}	Theoretical SPR λ_{max}
Au-CdS	612 nm	609 nm
Au-Cd _{1-x} Zn _x S_a	600 nm	598 nm
Au-Cd _{1-x} Zn _x S_b	586 nm	588 nm
Au-Cd _{1-x} Zn _x S_c	580 nm	582 nm

Table S3 Estimated E_g value of the shell for Au-CdS and Au-Cd_{1-x}Zn_xS from absorption spectra and optical bowing function.

	Estimate Eg of Cd _{1-x} Zn _x S shell from UV-vis spectra	Estimate Eg of Cd _{1-x} Zn _x S shell from constituent calculation
Au-CdS	2.52 eV	2.50 eV
Au-Cd _{1-x} Zn _x S_a	2.65 eV	2.57 eV
Au-Cd _{1-x} Zn _x S_b	2.71 eV	2.76 eV
Au-Cd _{1-x} Zn _x S_c	2.79 eV	2.80 eV

^a $E_g(Cd_{1-x}Zn_xS) = E_g(CdS)(1-x) + E_g(ZnS)x - bx(1-x)$. $E_g(CdS) = 2.5 \ eV$; $E_g(ZnS) = 3.7 \ eV$; b = 0.6;^{1,2} x = 0, 0.11, 0.31 and 0.37 for Au-CdS, Au-Cd_{1-x}Zn_xS_a, Au-Cd_{1-x}Zn_xS_b, Au-Cd_{1-x}Zn_xS_c and Au-Cd_{1-x}Zn_xS_d.

Table S4	Calculations	of E _{cb} of	the shell	and ΔG	for Au-C	CdS and Au	$1-Cd_{1-x}Zn_xS$	S NCs

entry	E _{cb} (V vs NHE)	E _{vb} (V vs NHE)	ΔG (V)
Au-CdS	-1.05	+1.47	-1.55
Au-Cd _{1-x} Zn _x S-a	-1.10	+1.55	-1.60
Au-Cd _{1-x} Zn _x S-b	-1.12	+1.59	-1.62
Au-Cd _{1-x} Zn _x S-c	-1.15	+1.64	-1.65

The E_{cb} of $Cd_xZn_yS_z$ nanocrystals can be calculated by using following formulas:^{2, 3}

 $E_{cb} = E^{e} - X + \frac{1}{2}E_{g}$ $X = \left\{X_{cd}^{x} \times X_{Zn}^{y} \times X_{S}^{z}\right\}^{\frac{1}{(x+y+z)}}$ $X_{cd} = \frac{1}{2}(A_{cd} + I_{cd})$ $X_{Zn} = \frac{1}{2}(A_{Zn} + I_{Zn})$ $X_{S} = \frac{1}{2}(A_{S} + I_{S})$

Here, *A* is the electron affinity ($A_S = 200 \text{ kJ/mol}$, $A_{Cd} = \sim 0 \text{ kJ/mol}$, $A_{Zn} = \sim 0 \text{ kJ/mol}$), *I* is the ionization energy ($I_{Cd} = 866 \text{ kJ/mol}$, $I_{Zn} = 904 \text{ kJ/mol}$, $I_S = 1000 \text{ kJ/mol}$), $E^e = 4.5 \text{ eV}$, E_g is the bandgap determined from $(\alpha hv)^2$ vs. hv plots in Fig S3.

References

- 1. J.-H. Lee, W.-C. Song, J.-S. Yi, K.-J. Yang, W.-D. Han and J. Hwang, *Thin Solid Films*, 2003, **431-432**, 349-353
- 2. X. Zhong, Y. Feng, W. Knoll and M. Han, J. Am. Chem. Soc., 2003, 125, 13559-13563.
- 3. C. Xing, Y. Zhang, W. Yan and L. Guo, *Int. J. Hydrogen Energy*, 2006, **31**, 2018-2024.
- 4. A. T. Nguyen, W.-H. Lin, Y.-H. Lu, Y.-D. Chiou and Y.-J. Hsu, *Appl. Catal. A- Gen.*, 2014, **476**, 140-147.