Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

High-Performance Mixed-Dimensional Perovskite Solar Cells with Enhanced

Stability against Humidity, Heat and UV Light

Haiying Zheng,^{ab} Guozhen Liu,^{ab} Xiaojing Chen,^a Bing Zhang,^d Ahmed Alsaedi,^c Tasawar Hayat,^{ce}

Xu Pan,*a and Songyuan Dai*acd

^aKey Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Hefei

Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

^bUniversity of Science and Technology of China, Hefei 230026, China.

NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah

21589, Saudi Arabia.

^dState Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

^eDepartment of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan.

Email: xpan@rntek.cas.cn

Fig. S1. FTIR spectrum of HOCH₂CH₂NH₂*HI. (Standard FTIR spectrum of HOCH₂CH₂NH₂*HCl is shown in http://sdbs.db.aist.go.jp/sdbs/cgibin/direct frame top.cgi)

Fig. S2. XRD patterns of EAI, (EA)₂PbI₄ (x=1) and [(EA)₂PbI₄]_{0.2}[(FAPbI₃)_{0.85}(MAPbBr₃)_{0.15}]_{0.8}

(x=20%) thin films.

Fig. S3. (a) The magnified XRD patterns with gaussian fit and (b) the dependence of full width at half maximum (FWHM) for the (110) peaks.

Fig. S4. Partially enlarged normalized PL spectra of [(EA)₂PbI₄]_x[(FAPbI₃)_{0.85}(MAPbBr₃)_{0.15}]_{1-x} (x=0, 1%, 3%, 5%, 10%) thin films.

Fig. S5. AFM images of $[(EA)_2PbI_4]_x[(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}]_{1-x}$ (x=0, 1%, 3%, 5%, 10%) films.

Fig. S6. (a) Short-circuit current density (J_{sc}), (b) Open circuit voltages (V_{oc}) and (c) Fill factor (FF) histogram fitted with a Gaussian distribution of the MD (x=3%) perovskite devices over 30 measured devices.

Fig. S7. Steady-state measurement of the photocurrent and PCE at the maximum power point of MD perovskite device.

Fig. S8. (a) PL spectra and (b) TRPL decay spectra of $[(EA)_2PbI_4]_x[(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}]_{1-x}$ (x=0, 1%, 3%, 5%, 10%) thin films on top of mesoporous TiO₂ layer.

Fig. S9. Normalized TA responses of [(EA)₂PbI₄]_x[(FAPbI₃)_{0.85}(MAPbBr₃)_{0.15}]_{1-x} (x=0, 1%, 3%, 5%, 10%) thin films.

Fig. S10. Nyquist plots of [(EA)₂PbI₄]_x[(FAPbI₃)_{0.85}(MAPbBr₃)_{0.15}]_{1-x} (x=0, 1%, 3%, 5%, 10%) PSCs

at V=1.0 V.

Fig. S11. Normalized (a) PCE, (b) short-circuit current density (J_{sc}), (c) open circuit voltages (V_{oc}) and (d) fill factor (FF) variation curves of unsealed normal and MD (x=1%, 3%, 5%, 10%) perovskite

devices under about 50% RH.

Fig. S12. Normalized (a) PCE, (b) short-circuit current density (J_{sc}), (c) open circuit voltages (V_{oc}) and (d) fill factor (FF) variation curves of unsealed normal and MD (x=1%, 3%, 5%, 10%) perovskite devices at 85 °C.

Fig. S13. Normalized (a) PCE, (b) short-circuit current density (J_{sc}), (c) open circuit voltages (V_{oc}) and (d) fill factor (FF) variation curves of unsealed normal and MD (x=1%, 3%, 5%, 10%) perovskite devices under continuous UV irradiation.

Fig. S14. XRD patterns of the normal and MD (x=3%) perovskite films before and after exposing to 85 °C.

Table S1. Photovoltaic parameters of the normal and the MD (x=1%, 3%, 5%, 10% and 20%) perovskite solar cells.

Device	$J_{\rm sc}$ (mA cm ⁻²)	$V_{\rm oc}\left({ m V} ight)$	FF (%)	PCE (%)
FA	22.39	1.06	67.97	16.17
1%	22.14	1.09	74.03	17.91
3%	22.20	1.10	77.13	18.79
5%	19.78	1.12	71.79	15.86
10%	17.55	1.13	66.69	13.20
20%	15.39	1.13	68.40	11.92

Table S2. Photovoltaic parameters of the normal and the MD (x=3%) perovskite devices under

reverse and forward scan directions.

Device	$J_{\rm sc}~({\rm mA~cm^{-2}})$	$V_{\rm oc}\left({ m V} ight)$	FF (%)	PCE (%)
FA-Reverse	22.39	1.06	67.97	16.17
FA-Forward	18.75	1.07	70.16	14.09

3%-Reverse	22.20	1.10	77.13	18.79
3%-Forward	22.33	1.09	76.19	18.56