Supporting Information

TiO₂ nanocrystals-embedded sulfur-doped porous carbon as high-performance and long-life anode material for sodium-ion batteries

Junfeng Li,^a Xiaojie Zhang,^{a,b} Lu Han,^a Dong Yan,^a Shujin Hou,^a Ting Lu,^a Yefeng Yao,^a Likun Pan^{a*}

^aShanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China, Fax: +86 21 62234321; Tel: +86 21 62234132; E-mail: lkpan@phy.ecnu.edu.cn

^bSchool of Chemical Engineering, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, Huaiyin Institute of Technology, Jiangsu Province, Huaian 223003, China

Fig. S1 XRD pattern of as-synthesized MIL-125(Ti).

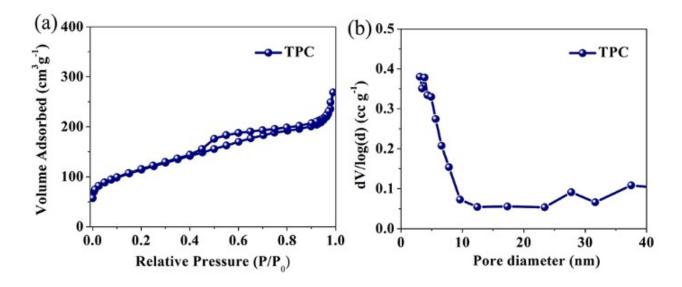


Fig. S2 (a) Nitrogen adsorption-desorption isotherms and (b) corresponding pore size distribution curves of TPC.

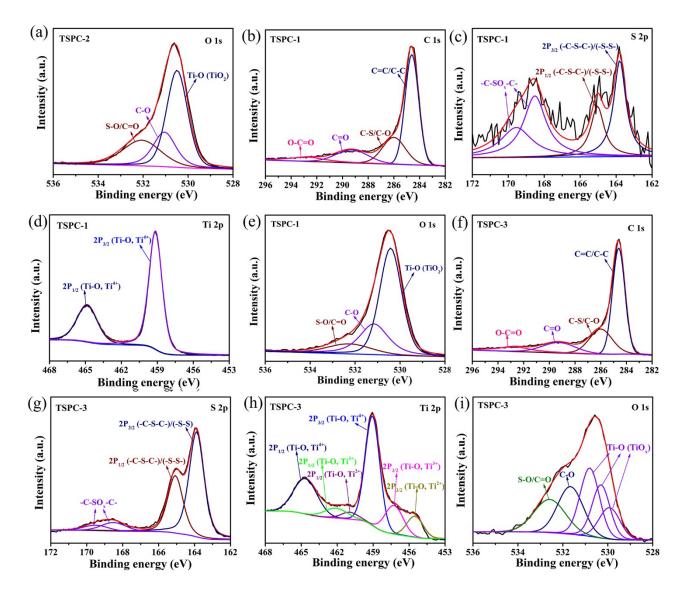


Fig. S3 XPS O 1s (a) spectra of TSPC-2. XPS C 1s (b), S 2p (c), Ti 2p (d) and O 1s (e) spectra of TSPC-1. XPS C 1s (f), S 2p (g), Ti 2p (f) and O 1s (i) spectra of TSPC-3.

The high deconvolutions of XPS C 1s, S 2p, Ti 2p, O 1s spectra of TSPC-1 and C 1s, S 2p spectra of TSPC-3 are similar to those of TSPC-2. However, for the high deconvolution of Ti 2p spectra of TSPC-3, two new fitted peaks at binding energies of 455.48 and 461.0 eV should be assigned to the Ti $2p_{3/2}$ and Ti $2p_{1/2}$ of Ti²⁺, while the other two new fitted peaks at binding energies of 457.25 and 462.2 eV should be attributed to the Ti $2p_{3/2}$ and Ti $2p_{1/2}$ of Ti^{3+,1} For the high deconvolution of O 1s spectra of TSPC-3, three new fitted peaks at binding energies of 529.9, 530.3 and 530.79 eV should be ascribed to the covalent bonds of TiO_x (TiO, Ti₂O₃ and TiO₂).¹ It should be noted that part of TiO in the outermost layer of TSPC-3 was further oxidized to Ti₂O₃ and TiO₂ due to its exposure to ambient environment.² The difference between XRD and XPS results of TSPC-3 is due to the fact that the measuring depth of XPS is only several nanometers but that for XRD is much deeper.³

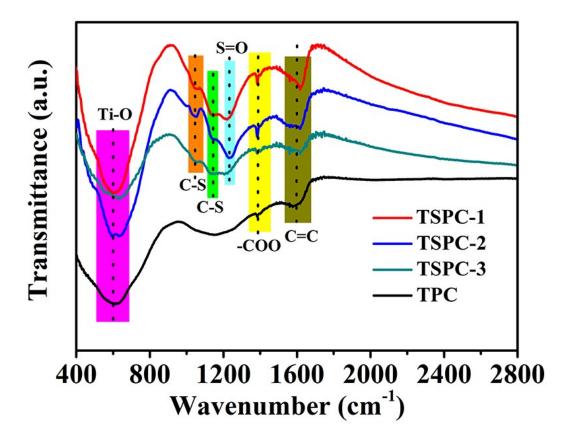


Fig. S4 FTIR spectra of TPC, TSPC-1, TSPC-2 and TSPC-3.

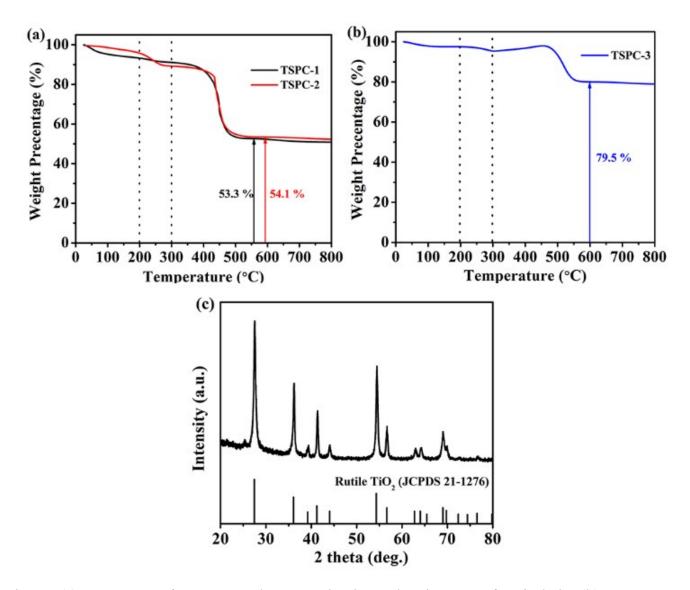


Fig. S5 (a) TG curves of TSPC-1 and TSPC-2 in air at a heating rate of 10 °C/min. (b) TG curves of TSPC-3 in air at a heating rate of 10 °C/min. (c) XRD pattern of TSPC-3 after TG test.

For TSPC-1 and TSPC-2, as sulfur-doped carbon can be completely burned in air, the resulting product will be only TiO₂. Therefore, the contents of TiO₂ in TSPC-1 and TSPC-2 are 53.3% and 54.1%, respectively. As seen in Fig. S5c, the diffraction peaks of TSCP-3 after TG test can be indexed to rutile TiO₂ (JCPDS 21-1276). Therefore, the weight loss between 330 and 600 $^{\circ}$ C is attributed to both the combustion of sulfur-doped carbon and oxidation of TiO. The content of TiO in TSPC-3 can be calculated by the following equation:

$$wt.\%(TiO) = wt.\%R \times \frac{M(TiO)}{M(TiO_2)}$$
(S1)

where wt.%R is the weight remaining percentage after 600 $^{\circ}$ C, and M represents the molecular mass of TiO and TiO₂.

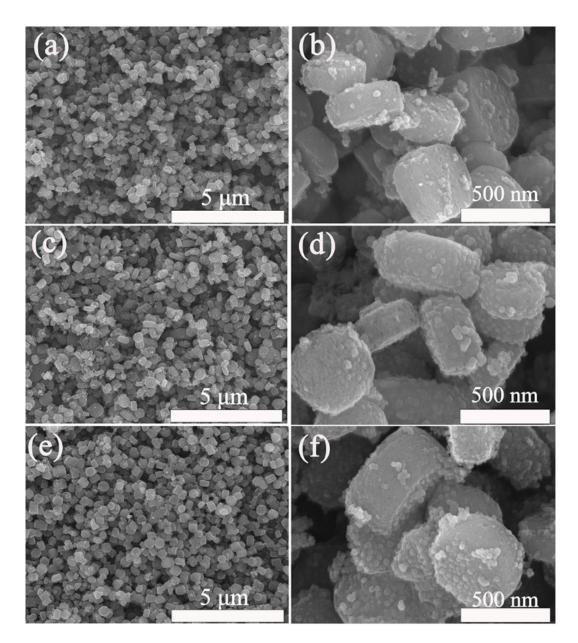


Fig. S6 FESEM images of (a,b) TPC, (c,d) TSPC-1 and (e,f) TSPC-3.

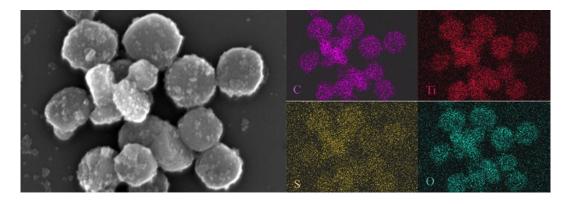


Fig. S7 EDS mapping of TSPC-2.

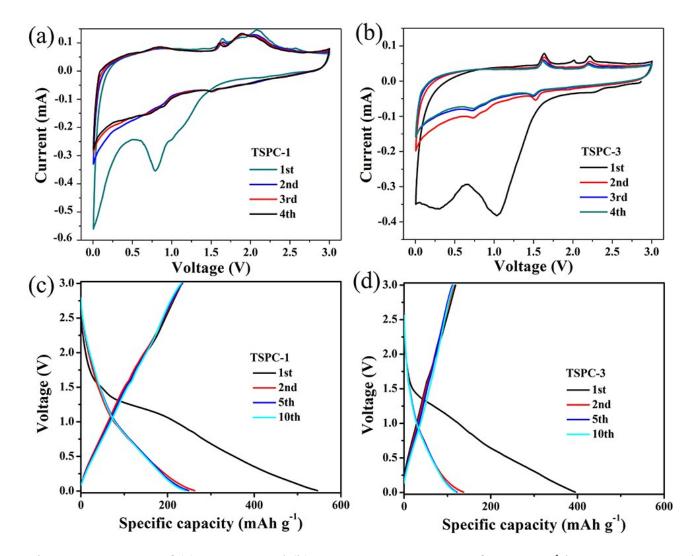


Fig. S8 CV curves of (a) TSPC-1 and (b) TSPC-3 at a scan rate of 0.2 mV s⁻¹ between 0.005 and 3 V. Charge /discharge profiles of (c) TSPC-1 and (d) TSPC-3 at different cycles at a current density of 50 mA g^{-1} .

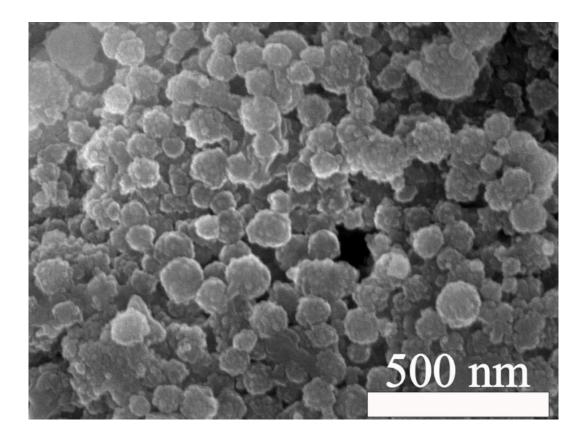


Fig. S9 FESEM images of TSPC-2 electrode after 100 cycles at a current density of 50 mA g⁻¹.

Table S1 Specific surface areas, pore volumes and mean pore diameters of TSPC-1, TSPC-2 and TSPC-3 measured by BET method.

Sample	Specific surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Mean pore diameter (nm)
ТРС	404.5	0.27	3.06
TSPC-1	343.5	0.58	3.45
TSPC-2	380.2	0.40	3.40
TSPC-3	401.7	0.38	3.20

Table S2 Weight percentages	of carbon and sulfur in	TSPC determined from the EA.

Sample	C (wt.%)	S (wt.%)
TSPC-1	25.9	8.3
TSPC-2	19.7	14.2
TSPC-3	18.1	4.3

Table S3 Sodium-storage performance of TSPC-2 in this work compared with other reported TiO₂-based anode material in the literatures.

Anode	Discharge capacity (mA h g ⁻¹)	Current Density (mA g ⁻¹)	Cycle number (cycles)	Reference
TiO ₂ /C nanofibers	237.1	200	1000	Ref. S4
C-TiO ₂ microspheres	155	20	50	Ref. S5
Hybrid TiO ₂ @graphene	186.6	100	100	Ref. S6
Carbon-coated TiO ₂ nanoparticles	210.7	30	100	Ref. S7
Anatase/bronze TiO ₂ /C	143	167.5	300	Ref. S8
Carbon-coated rutile TiO ₂	175	84	200	Ref. S9
Graphene@nitrogen doped carbon@TiO ₂	263	50	200	Ref. S10
Anatase TiO ₂ @C composites	167.4	100	110	Ref. S11
Graphene- supported TiO ₂ nanospheres	208	20	200	Ref. S12
TSPC-2	323	50	100	This work
Anatase/bronze TiO ₂ /C	104	3350	6000	Ref. S8
Carbon-coated rutile TiO ₂	70	3360	2000	Ref. S9

Graphene@nitrogen doped carbon@TiO ₂	108.8	1000	5000	Ref. S10
Anatase TiO ₂ @C composites	148	500	500	Ref. S11
Nitrogen doped graphene grafted TiO ₂	425.6	2000	200	Ref. S13
TSPC-2	207.6	2500	1500	This work

References

- [S1] H. Yang and J.-G. Duh, *RSC Adv.*, 2016, **6**, 37160-37166.
- [S2] H. Qian, W. Zhou and H. Zheng, *Surf. Rev. Lett.*, 2008, **15**, 675-679.
- [S3] X. Zheng, M. Huang and C. Ding, *Biomaterials*, 2000, **21**, 841-849.
- [S4] Y. Xiong, J. Qian, Y. Cao, X. Ai and H. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 16684-16689.
- [S5] S.-M. Oh, J.-Y. Hwang, C. S. Yoon, J. Lu, K. Amine, I. Belharouak and Y.-K. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 11295-11301.
- [S6] H. Liu, K. Cao, X. Xu, L. Jiao, Y. Wang and H. Yuan, *ACS Appl. Mater. Interfaces*, 2015, **7**, 11239-11245.
- [S7] Y. Ge, H. Jiang, J. Zhu, Y. Lu, C. Chen, Y. Hu, Y. Qiu and X. Zhang, *Electrochim. Acta*, 2015, **157**, 142-148.
- [S8] C. Chu, J. Yang, Q. Zhang, N. Wang, F. Niu, X. Xu, J. Yang, W. Fan and Y. Qian, ACS Appl. Mater. Interfaces, 2017, 9, 43648-43656.
- [S9] G. Zou, J. Chen, Y. Zhang, C. Wang, Z. Huang, S. Li, H. Liao, J. Wang and X. Ji, J. Power Sources, 2016, 325, 25-34.
- [S10] Z. Zhang, Y. An, X. Xu, C. Dong, J. Feng, L. Ci and S. Xiong, *Chem. Commun.*, 2016, **52**, 12810-12812.
- [S11] X. Shi, Z. Zhang, K. Du, Y. Lai, J. Fang and J. Li, J. Power Sources, 2016, 330, 1-6.
- [S12] Y. Xiong, J. Qian, Y. Cao, X. Ai and H. Yang, J. Mater. Chem. A, 2016, 4, 11351-11356.
- [S13] G. Qin, X. Zhang and C. Wang, J. Mater. Chem. A, 2014, 2, 12449-12458.