Electronic Supplementary Information

Experimental section

Materials: GO, commercial TiO₂ powder, ammonium chloride (NH₄Cl), hydrazine hydrate (N₂H₄·H₂O), sodium hypochlorite (NaClO), sodium hydroxide (NaOH), sodium salicylate (C₇H₅O₃Na), sodium sulfate (Na₂SO₄), hydrochloric acid (HCl), ethanol (CH₃CH₂OH), and carbon paper were bought from Beijing Chemical Corporation. Para-(dimethylamino) benzaldehyde (C₉H₁₁NO), sodium nitroferricyanide (III) dihydrate (Na₂Fe(CN)₅NO·2H₂O), and Nafion were purchased from Aladdin Ltd. (Shanghai, China). The water used throughout all experiments was purified through a Millipore system.

*Preparation of TiO*₂*-rGO:* TiO₂ powder was dissolved in homogeneous GO aqueous dispersion under stirring for about 1 h. After that, the mixture was sealed in a 50 mL Teflon-lined autoclave and maintained at 180 °C for 2 h. The autoclave was naturally cooled down to room temperature. Finally, a black cylinder was obtained.

*Preparation of TiO*₂-*rGO/CP electrode:* 10 mg TiO₂-rGO powders and 20 μ L of Nafion solution (5 wt%) were dispersed in 980 μ L mixed solution contain 600 μ L ethanol and 380 μ L H₂O by 2 h sonication to form a homogeneous ink. Then, 10 μ L TiO₂-rGO was loaded on a CP with area of 0.5 x 0.5 cm² and dried under ambient condition.

Characterizations: XRD patterns were obtained from a Shimazu XRD-6100 diffractometer with Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (Japan). SEM images were collected from the tungsten lamp-equipped SU3500 scanning electron microscope at an accelerating voltage of 20 kV (HITACHI, Japan). Scanning electron microscope (SEM) measurements were recorded on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. TEM images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of spectrophotometer were measured on SHIMADZU UV-1800 ultraviolet-visible (UV-

Vis) spectrophotometer. Thermogravimetric analysis (TGA) was performed on a Perkin-Elmer Model Pyris1 TGA apparatus at a heating rate of 10 °C min⁻¹ in nitrogen atmosphere.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) using a standard three-electrode system using TiO₂-rGO/CP as the working electrode, graphite rod as the counter electrode, and saturated Ag/AgCl electrode as the reference electrode. In all measurements, saturated Ag/AgCl electrode was calibrated with respect to reversible hydrogen electrode as following: in 0.1 M Na₂SO₄ aqueous solution, $E(RHE) = E(Ag/AgCl) + 0.059 \times pH + 0.197$ V. All experiments were carried out at room temperature. For N₂ reduction experiments, the 0.1 M Na₂SO₄ electrolyte was purged with N₂ for 30 min before the measurement. Potentiostatic test was conducted in N₂-saturated 0.1 M Na₂SO₄ solution (35 mL) in a two-compartment cell, which was separated by Nafion 211 membrane.

Determination of NH₃: The concentration of NH₄⁺ was prepared as follows. Firstly, 50 µg mL⁻¹ NH₄⁺ solution was prepared and diluted to 1 µg mL⁻¹. Then, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 mL NH₄⁺ solution with concentration of 1 µg mL⁻¹ were poured into 10 mL test tubes and separately diluted to 10 mL with 0.1 M Na₂SO₄ and the resulting concentrations of NH₄⁺ in the solutions are 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 µg mL⁻¹. The produced NH₃ was detected with indophenol blue by ultraviolet spectroscopy.¹ In detail, 4 mL electrolyte was obtained from the cathodic chamber and mixed with 50 µL oxidizing solution containing NaClO (ρ Cl = 4 ~ 4.9) and NaOH (0.75 M), 500 µL coloring solution containing 0.4 M C₇H₆O₃ and 0.32 M NaOH, and 50 µL catalyst solution (1 wt% Na₂[Fe(CN)₅NO]) for 2 h. Absorbance measurements were performed at λ = 660 nm. The concentration-absorbance curve was calibrated using standard NH₄⁺ solution with a serious of concentrations. The fitting curve (y = 0.682x + 0.029, R² = 0.999) shows good linear relation of absorbance value with NH₄⁺ concentration.

Determination of N_2H_4 : The concentration of N_2H_4 was prepared as follows. Firstly, 2 mg mL⁻¹ N_2H_4 solution was prepared and diluted to 2 µg mL⁻¹. Then, 0.0, 0.5, 1.0, 1.5,

2.0, 2.5, 5.0 mL N₂H₄ solution with concentration of 2 µg mL⁻¹ were poured into 10 mL test tubes and separately diluted to 5 mL with 0.1 M Na₂SO₄ and the resulting concentrations of N₂H₄ in the solutions are 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 µg mL⁻¹. The N₂H₄ present in the electrolyte was determined by the method of Watt and Chrisp.² The mixture of C₉H₁₁NO (5.99 g), HCl (30 mL), and C₂H₅OH (300 mL) was used as a color reagent. In detail, 5 mL electrolyte was removed from the electrochemical reaction vessel, and added into 5 mL above prepared color reagent and stirring 10 min at room temperature. Moreover, the absorbance of the resulting solution was measured at a wavelength of 455 nm. The concentration absorbance curves were calibrated using standard N₂H₄ solution with a series of concentrations. The fitting curve (y = 0.4909x + 0.047, R² = 0.999) shows good linear relation of absorbance value with N₂H₄ concentration.

*Calculations of NH*₃ *formation rate and FE:* NH₃ formation rate was calculated using the following equation:

NH₃ formation rate = $[NH_4^+] \times V/(m_{cat.} \times t)$

FE was calculated according to following equation:

 $FE = 3 \times F \times [NH_4^+] \times V/(18 \times Q)$

Where $[NH_4^+]$ is the measured NH_4^+ concentration; V is the volume of the cathodic reaction electrolyte; t is the potential applied time; $m_{cat.}$ is the loaded quality of catalyst; F is the Faraday constant; and Q is the quantity of applied electricity

Fig. S1. TGA curve of TiO₂-rGO.

Fig. S2. SEM images of TiO₂ and TiO₂-rGO.

Fig. S3. SAED pattern taken from TiO₂-rGO.

Fig. S4. XPS spectrum of GO in the C 1s.

Fig. S5. (a) LSV curves and (b) corresponding Tafel plots of TiO₂-rGO/CP in Ar- and N₂-saturated 0.1 M Na₂SO₄.

Fig. S6. CV curves of TiO₂-rGO/CP in Ar- and N_2 -saturated 0.1 M Na_2SO_4 .

Fig. S7. (a) UV-Vis absorption spectra of indophenol assays with $NH_{4^{+}}$ concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of $NH_{4^{+}}$ concentrations.

Fig. S8. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S9. UV-Vis absorption spectra of electrolytes stained with indophenol indicator before and after 2 h electrolysis at the potential of -0.90 V under different electrochemical conditions.

Fig. S10. UV-Vis absorption spectra of the 0.1 M Na_2SO_4 electrolyte stained with indophenol indicator after continuously supplying N_2 or Ar with no applied voltage.

Fig. S11. UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp before and after 2 h electrolysis in N_2 atmosphere at -0.90 V.

Fig. S12. CVs of (a) TiO₂-rGO/CP and (b) TiO₂/CP with various scan rates (20-220 mV s⁻¹) in the region of -0.1 to -0.2 V vs. Ag/AgCl. The capacitive current densities at -0.15 V vs. Ag/AgCl as a function of scan rates for (c) TiO₂-rGO/CP and (d) TiO₂/CP.

Fig. S13. Nyquist plots of TiO₂-rGO/CP and TiO₂-/CP.

Fig. S14. NH_3 yields and FEs of TiO₂-rGO/CP with different N_2 flow rate.

Fig. S15. XRD patterns for CP and TiO_2 -rGO/CP after long-term electrolytic reaction in 0.1 M Na₂SO₄.

reaction in 0.1 M Na_2SO_4 .

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref.
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	$15.13 \ \mu g \ h^{-1} \ m g^{-1}_{cat.}$	3.3	This work
Au nanorods	0.1 M KOH	$6.042 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	4	3
α-Au/CeO _x -RGO	0.1 M HCl	8.31 μg h ⁻¹ mg ⁻¹ _{cat.}	10.1	4
TA-reduced Au/TiO ₂	0.1 M HCl	21.4 μ g h ⁻¹ mg ⁻¹ _{cat.}	8.11	5
Pd/C	0.1 M PBS	$4.5 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	8.2	6
Ru/C	2.0 M KOH	$0.21 \ \mu g \ h^{-1} \ cm^{-2}$	0.28	7
NPC	0.05 M H ₂ SO ₄	23.8 $\mu g h^{-1} m g^{-1}_{cat.}$	1.42	8
γ-Fe ₂ O ₃	0.1 M KOH	$0.212 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	1.9	9
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 M HCl	23.21 μ g h ⁻¹ mg ⁻¹ _{cat.}	10.16	10
MoS ₂ /CC	0.1 M Na ₂ SO ₄	4.94 μ g h ⁻¹ cm ⁻²	1.17	11
Mo ₂ N	0.1 M HCl	$78.4 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	4.5	12
MoN NA/CC	0.1 M HCl	$3.01 \times 10^{-10} \text{ mo1 s}^{-1} \text{ cm}^{-2}$	1.15	13
Mo nanofilm	0.01 M H ₂ SO ₄	$1.89 \ \mu g \ h^{-1} \ cm^{-2}$	0.72	14
PEBCD/C	0.5 M Li ₂ SO ₄	$1.58 \ \mu g \ h^{-1} \ cm^{-2}$	2.85	15
Fe ₂ O ₃ -CNT	KHCO ₃	$0.22 \ \mu g \ h^{-1} \ cm^{-2}$	0.15	16
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	$3.43 \ \mu g \ h^{-1} \ cm^{-2}$	2.6	17
MoO ₃	0.1 M HCl	29.43 μg h ⁻¹ mg ⁻¹ _{cat.}	1.9	18
VN/TM	0.1 M HCl	$5.14 \ \mu g \ h^{-1} \ cm^{-2}$	2.25	19
Nb ₂ O ₅ nanofiber	0.1 M HCl	43.6 μ g h ⁻¹ mg ⁻¹ _{cat.}	9.26	20

Table S1. Comparison of the electrocatalytic NRR performance of TiO_2 -rGO with other aqueous-based NRR electrocatalysts at room temperature.

References

- 1 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- 2 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- 3 D. Bao, Q. Zhang, F. Meng, H. Zhong, M. Shi, Y. Zhang, J. Yan, Q. Jiang and X. Zhang, *Adv. Mater.*, 2017, 29, 1604799.
- 4 S. Li, D. Bao, M. Shi, B. Wulan, J. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1700001.
- 5 M. Shi, D. Bao, B. Wulan, Y. Li, Y. Zhang, J. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1606550.
- J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, *Nat. Commun.*, 2018, 9, 1795.
- V. Kordali, G. Kyriacou and C. Lambrou, *Chem. Commun.*, 2000, 17, 1673– 1674.
- Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.
- J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.
 E. Sung, J. Choi and H. S. Park, *ACS Sustainable Chem. Eng.*, 2017, 5, 10986–10995.
- 10 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, Angew. Chem., Int. Ed., 2018, 57, 6073–6076.
- L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, **30**, 1800191.
- 12 X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, *Chem. Commun.*, 2018, **54**, 8474–8477.
- 13 L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, DOI: 10.1021/acssuschemeng.8b01438.
- 14 D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967–18971.

- 15 G. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- 16 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem., Int. Ed.*, 2017, **56**, 2699–2703.
- 17 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie, A. M. Asiri and X. Sun, *Nanoscale*, 2018, **10**, 14386–14389.
- 18 J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974–12977.
- 19 R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, DOI: 10.1021/acssuschemeng.8b01261.
- 20 J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, DOI: 10.1016/j.nanoen.2018.07.045.