Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

From monometallic Au nanowires to trimetallic AuPtRh nanowires: interface control for the formic acid electroxidation[†]

Fumin Li,^a Yu Ding,^a Xue Xiao,^b Shibin Yin,^c Mancheng Hu,*^a Shuni Li^a and Yu Chen*^b

^a Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China. *Email: hmch@snnu.edu.cn (M. Hu)

^b Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China. *E-mail: ndchenyu@gmail.com (Y. Chen)

^c Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, PR China.

Fig. S1 Johnson Matthey base price chart of Pt and Pd between December 2015 and May 2018.

Fig. S2 (A) EDX spectrum and (B) XRD pattern of Au₆Pt₁ NWs.

Fig. S3 Linear sweep voltammetry curves of the mixed solution of 0.1 M KCl + 0.01 M H₂PtCl₆ and 0.1 M KCl + 0.01M HAuCl₄ solution on the glassy carbon electrode at 50 mV s^{-1} .

Fig. S4 TEM images and EDX spectra of (A) Au₃Pt₁ NWs, (B) Au₄Pt₁ NWs, (C) Au₅Pt₁ NWs, and (D) Au₇Pt₁ NWs.

Fig. S5 TEM images of (A) Au_3Pt_1/C , (B) Au_4Pt_1/C , (C) Au_5Pt_1/C , (D) Au_6Pt_1/C , and (E) Au_7Pt_1/C .

Fig. S6 (A) EDX spectrum of $Au_6Pt_1Rh_{0.5}$ NWs. (B) XRD patterns of Au_6Pt_1 NWs and $Au_6Pt_1Rh_{0.5}$ NWs.

Fig. S7 Rh 3d XPS spectra of Au₆Pt₁Rh_{0.5}.

Fig. S8 TEM images and EDX spectra of (A) Au₆Pt₁Rh_{0.1} NWs, (B) Au₆Pt₁Rh_{0.3} NWs, and (C) Au₆Pt₁Rh_{0.7} NWs.

Fig. S9 (A) Pt 4f XPS spectra of Au_6Pt_1 NWs and $Au_6Pt_1Rh_{0.5}$ NWs. (B) ECSAnormalized positive direction CV scan curves of $Au_6Pt_1Rh_{0.5}/C$ electrocatalysts in 0.5 M HCOOH + 0.5 M H₂SO₄ solution at scan rate of 50 mV s⁻¹.

Fig. S10 EIS curves of $Au_6Pt_1Rh_{0.5}/C$ and commercial Au_6Pt_1/C in 0.5 M HCOOH + 0.5 M H₂SO₄ solution (applied potential: 0.4 V vs. RHE).

Electrocatalysts	Electrolyte	Mass activity	Specific activity	Refs.	
		widss activity	Specific activity		Year
		$(A m g_{Pt or Pd}^{-1})$	$(mA cm_{ECSA}^{-2})$		
Au ₆ Pt ₁ Rh _{0.5} /C	0.5 M HCOOH	8.05	14.3	This	• • • • •
	+ 0.5 M H ₂ SO ₄			work	2018
	0.25 M HCOOH	4.47	7.92	This	2018
	$+ 0.5 \text{ M} \text{ H}_2 \text{SO}_4$			work	2010
		2.24	3.97	T1 ·	
	0.1 M HCOOH			1 h1s	2018
	$+ 0.5 \text{ M H}_2 \text{SO}_4$			work	
CuPd/WO _{2.72}	0.1 M HCOOH	2.09	n.a.		
	+ 0.1 M HClO ₄			1	2018
Au@Pt-	0.1 M HCOOH	0 464	0.443	2	2018
graphene	$+ 0.1 \text{ M H}_2\text{SO}_4$	0.404	0.443	2	2010
		1.06	5.12	3	2018
nanocatalysts	$+ 0.5 \text{ M} \text{ H}_2 \text{S} \text{O}_4$				
AgPt	1.0 M HCOOH	0.1.50	1.00		2010
nanowires	+ 0.5 M H ₂ SO ₄	0.152	1.03	4	2018
Pt ₃ Ni	0 5 M HCOOH				
tetrahexahedral	$+ 0.1 \text{ M} \text{HClO}_4$	n.a.	~3.0	5	2017
nanoframes/C	1 0.1 10 110104				
PdCu	0.25 M HCOOH + 0.5 M H ₂ SO ₄	1.66	1.18		
nanosheets				6	2017
nanosneets	1 0.5 WI 112504				
Pt ₄ PdCu _{0.4}	0.1 M HCOOH	1.20	2.0	7	2017
nanoframes	+ 0.1 M HClO ₄	~1.29	~3.0	1	2017
Porous Pd	0.5 M HCOOH	0.409	3.17	8	2017
nanosheets	$+ 0.5 \text{ M H}_2 \text{SO}_4$			-	

Table S1. The catalytic activity of recently reported Pt-based or Pd-based electrocatalysts for the FAOR.

References

- 1 Z. Xi, J. Li, D. Su, M. Muzzio, C. Yu, Q. Li and S. Sun, J. Am. Chem. Soc., 2017, 139, 15191.
- 2 N. Seselj, C. Engelbrekt, Y. Ding, H. A. Hjuler, J. Ulstrup and J. Zhang, *Adv. Energy Mater.*, 2018, 1702609.

- 3 J. Zhang, M. Chen, H. Li, Y. Li, J. Ye, Z. Cao, M. Fang, Q. Kuang, J. Zheng and Z. Xie, *Nano Energy*, 2018, **44**, 127.
- 4 X. Jiang, G. Fu, X. Wu, Y. Liu, M. Zhang, D. Sun, L. Xu and Y. Tang, *Nano Res.*, 2018, **11**, 499.
- 5 C. Wang, L. Zhang, H. Yang, J. Pan, J. Liu, C. Dotse, Y. Luan, R. Gao, C. Lin, J. Zhang, J. P. Kilcrease, X. Wen, S. Zou and J. Fang, *Nano Lett.*, 2017, **17**, 2204.
- 6 N. Yang, Z. Zhang, B. Chen, Y. Huang, J. Chen, Z. Lai, Y. Chen, M. Sindoro, A.-L. Wang, H. Cheng, Z. Fan, X. Liu, B. Li, Y. Zong, L. Gu and H. Zhang, *Adv. Mater.*, 2017, **29**, 1700769.
- 7 W. Ye, S. Chen, M. Ye, C. Ren, J. Ma, R. Long, C. Wang, J. Yang, L. Song and Y. Xiong, *Nano Energy*, 2017, **39**, 532.
- 8 X. Qiu, H. Zhang, P. Wu, F. Zhang, S. Wei, D. Sun, L. Xu and Y. Tang, *Adv. Funct. Mater.*, 2017, **27**, 1603852.