### **Supporting Information**

# Rapid microwave-assisted synthesis of high-rate FeS<sub>2</sub> nanoparticles anchored on graphene for hybrid supercapacitors with ultrahigh energy density

Zhiqin Sun, Huiming Lin, Feng Zhang, Xue Yang, He Jiang, Qian Wang<sup>\*</sup>, Fengyu Qu<sup>\*</sup>

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials,

Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China

## 1. Experimental

#### 1.1. Materials

Cobalt chloride hexahydrate (CoCl<sub>2</sub>·6H<sub>2</sub>O, AR), urea (CO(NH<sub>2</sub>)<sub>2</sub>, AR), potassium hydroxide (KOH, AR), nickel nitrate hexahydrate (Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, AR), ferrous sulfate (FeSO<sub>4</sub>·7H<sub>2</sub>O, AR), sodium thiosulfate pentahydrate (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>·5H<sub>2</sub>O, AR), sodium polyacrylate (PAAS), sulfuric acid (H<sub>2</sub>SO<sub>4</sub>, 98 wt.%), potassium permanganate (KMnO<sub>4</sub>, AR), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) were purchased from Sinopharm Chemical Reagent Co. Ltd. Sodium sulfide nonahydrate (Na<sub>2</sub>S·9H<sub>2</sub>O, 99.99 wt.%) was obtained from Aladdin (Shanghai).

## 1.2. Synthesis of FeS<sub>2</sub>/GNS composite

Graphene oxide (GO) was prepared through modified Hummers method as reported before.<sup>1</sup> FeS<sub>2</sub>/GNS composite was synthesized by using ultra-fast microwave-assisted hydrothermal method. In brief, 30 mL of the GO solution (0.16 mg mL<sup>-1</sup>) was subject to ultrasonic vibration for 20 min. Then 0.25 mmol of FeSO<sub>4</sub>·7H<sub>2</sub>O and 0.5

<sup>\*</sup>Corresponding authors.

E-mail addresses: wangqianhrb@163.com (Q.Wang); qufengyuhsd@163.com (F.Y.Qu).

mmol of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>· 5H<sub>2</sub>O was added into the above solution and stirred for another 20 min. Subsequently, the as-prepared solution was transferred into a microwave reactor and heated at 180 °C with a power of 300 W for 5 min. Finally, the sample was centrifuged and washed using ultrapure water for several times and dried in an oven at 80 °C for 12 h. Pure FeS<sub>2</sub> was also synthesized without the use of GNS. For the control experiment, FeS<sub>2</sub>/GNS-1 and FeS<sub>2</sub>/GNS-2 composites had been also prepared by the similar hydrothermal route with 0.16 mmol of FeSO<sub>4</sub>·7H<sub>2</sub>O, 0.32 mmol of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>·5H<sub>2</sub>O and 0.42 mmol of FeSO<sub>4</sub>·7H<sub>2</sub>O, 0.84 mmol of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>·5H<sub>2</sub>O, respectively.

#### 1.3. Synthesis of Ni(OH)<sub>2</sub>@Co<sub>9</sub>S<sub>8</sub> composite

In a typical synthesis of  $Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10}$  precursor,  $CoCl_2 \cdot 6H_2O$  (2.5 mmol) and urea (2.5 mmol) were dissolved in 40 mL of deionized water under stirring and transferred into a 50 mL Teflon-lined stainless steel autoclave, which was maintained at 100 °C for 2 h. The pink precipitate was washed with deionized water and dried at 80 °C. Afterwards, 1 mmol of as-prepared precursor was dispersed in 40 mL of deionized water, and then, 3 mmol Na<sub>2</sub>S·9H<sub>2</sub>O was added into the dispersion. After magnetic stirring for 1 h, the dispersion was transferred into a 50 mL Teflon–lined stainless steel autoclave at 160 °C for 12 h. Finally, the black product was centrifuged and washed by deionized water and the Co<sub>9</sub>S<sub>8</sub> nanotube was synthesized.

 $Ni(OH)_2@Co_9S_8$  composite was typically prepared as follows: the mixture contained 30 mL of Co\_9S\_8 nanotube dispersion (1 mg mL<sup>-1</sup>) and 1 M Ni(NO<sub>3</sub>)<sub>2</sub> was stirred for a few minutes, and then the pH of the whole dispersion was adjusted to 9 with ammonia (5 wt.%). Finally, the precipitate was washed and dried in a vacuum oven at 80 °C for 12 h. Pure Ni(OH)<sub>2</sub> was also prepared for comparison under the same procedure without the addition of Co<sub>9</sub>S<sub>8</sub> nanotube.

#### 1.4. Characterization

X-ray diffraction (XRD) equipped with CuK $\alpha$  radiation ( $\lambda = 0.15406$  nm) was used to characterize the crystallographic structures of all materials. Scanning electron microscope (SEM, Hitachi S–4800) and transmission electron microscope (TEM, Tecnai F20) were conducted to characterize the micromorphology. X-ray photoelectron spectroscopy (XPS, PHI 5000 ESCA) was carried out to investigate the valence state and composition of materials. Raman spectra of the products were characterized by Micro-Raman spectrometer (J-Y; HR800, France) under excitation wavelength of 488 nm. Thermogravimetric analysis (TGA) was used to calculate the content of graphene nanosheets in the composites. Nitrogen adsorption–desorption isotherms were measured at 77 K on a Quantachrome NOVA-3000 system.

### 1.5. Electrochemical measurements

The working electrodes were prepared as follows: First, the electroactive materials, carbon black and poly (tetrafluoroethylene) were mixed in a mass ratio of 75:20:5 and dispersed in ethanol. Then the resulting mixture was coated onto the nickel foam substrate ( $1 \times 1$  cm<sup>2</sup>), which was followed by drying at 60 °C for 12 h in an oven. The as-prepared materials (mass loading: ~ 3 mg cm<sup>-2</sup>) was used as working electrode with 2 M KOH solution as electrolyte. A three-electrode system was used to investigate the electrochemical performances of the individual electrodes. A platinum foil (1 cm<sup>2</sup>) and Hg/HgO were used as the counter and the reference electrodes, respectively. Cyclic voltammetry (CV) and chronopotentiometry were performed on a CHI660E within -1.1 to 0 V and the electrochemical impedance (EIS) were carried out in the frequency range

from 100 kHz to 0.01 Hz at open circuit potential with an AC amplitude of 5 mV. The specific capacity of the anode and cathode could be calculated based on the galvanostatic charge/discharge curves by the following equation:

$$C_{\rm m} = I \Delta t / m \Delta V \tag{S1}$$

where  $C_{\rm m}$ , *I*, *m*,  $\Delta t$  and  $\Delta V$  are the specific capacity, current, mass, discharge time and potential range of the active material.

#### 1.6. Fabrication of hybrid supercapacitor device

PAAS-KOH gel electrolyte was prepared as follows: 2.5 g PAAS was dissolved in 30 mL of 2 M KOH aqueous solution and stirred until the solution became homogeneous and clear. FeS<sub>2</sub>/GNS and Ni(OH)<sub>2</sub>@Co<sub>9</sub>S<sub>8</sub> electrodes, served as the anode and cathode, respectively, were coated with the gel electrolyte and separated with a piece of cellulose paper to fabricated all-solid-state hybrid supercapacitor. The mass balance of the anode and cathode should obey the relationships as follows:

$$q_{+}=q_{-} \tag{S2}$$

$$q=CVm$$
 (S3)

where q is the stored charge, C is the specific capacity, V is the potential range and the m is the mass of the active material.

Specific energy and power density of the hybrid supercapacitor device were calculated based on the following equations:

$$E = \int IV \mathrm{d}t \tag{S4}$$

$$P = \frac{E}{t} \tag{S5}$$

where *E*, *I*, *V*, *t* and *m* is the energy density, current, voltage, discharge time and mass of the active materials of two electrodes.



Fig. S1 (a, b) SEM images of pure FeS<sub>2</sub>. (c) SEM and (d) TEM images of FeS<sub>2</sub>/GNS-

1, (e) SEM and (f) TEM images of FeS<sub>2</sub>/GNS-2.



**Fig. S2** (a) SWV curve of FeS<sub>2</sub>/GNS electrode. (b) CV curves at different scan rates and (c) galvanostatic charge-discharge curves at various current densities of pure FeS<sub>2</sub> electrode. (d) CV curves at different scan rates and (e) galvanostatic charge-discharge curves at various current densities of GNS electrode. (f) Rate capability of pure FeS<sub>2</sub>, GNS and FeS<sub>2</sub>/GNS electrodes.



**Fig. S3** (a) Galvanostatic charge/discharge curves of pure FeS<sub>2</sub>, FeS<sub>2</sub>/GNS, FeS<sub>2</sub>/GNS-1 and FeS<sub>2</sub>/GNS-2 electrodes at 5 A  $g^{-1}$  and (b) specific capacity of all the electrodes at various current densities.

| Electrode materials      | Electrolyte                         | Potential range | Capacitance<br>(F g <sup>-1</sup> ) | Capacitance<br>retention  | Ref. |
|--------------------------|-------------------------------------|-----------------|-------------------------------------|---------------------------|------|
| Fe3O4/carbon nanosheets  | 6 M KOH                             | -1.1 to -0.2 V  | 586                                 | 58%                       | 2    |
|                          |                                     |                 | $(0.5 \text{ A g}^{-1})$            | (10 A g <sup>-1</sup> )   |      |
| 3D Fe3O4/rGO             | 2 М КОН                             | -1.0 to 0.4 V   | 455                                 | 70%                       | 3    |
|                          |                                     |                 | (8 mV s <sup>-1</sup> )             | (27 mV s <sup>-1</sup> )  |      |
| Fe2O3@Nickel nanotube    | 1 M Na <sub>2</sub> SO <sub>4</sub> | -0.8 to 0 V     | 418.7                               | 42%                       | 4    |
|                          |                                     |                 | (10 mV s <sup>-1</sup> )            | (200 mV s <sup>-1</sup> ) |      |
| FeOOH                    | 1 M LiOH                            | -1.15 to 0.1 V  | 326                                 | 90%                       | 5    |
| nanorods/graphene        |                                     |                 | $(0.5 \text{ A g}^{-1})$            | (10 A g <sup>-1</sup> )   |      |
| Fe3O4 particles/graphene | 1 M KOH                             | -1 to 0.1 V     | 220.1                               | 61%                       | 6    |
|                          |                                     |                 | $(0.5 \text{ A g}^{-1})$            | (5 A g <sup>-1</sup> )    |      |
| Fe2O3 particles/graphene | 1 M KOH                             | -1.05 to -0.3 V | 908                                 | 68.8%                     | 7    |
|                          |                                     |                 | $(2 \text{ A g}^{-1})$              | $(50 \text{ A g}^{-1})$   | ,    |
| α-Fe2O3@MnO2             | 3 М КОН                             | -0.4 to 0.5 V   | 289                                 | 40%                       | 8    |
|                          |                                     |                 | (1 A g <sup>-1</sup> )              | (5 A g <sup>-1</sup> )    | 0    |
| FeS2/GNS                 | 2 M KOH                             | -1.1 to 0 V     | 721                                 | 82%                       | This |
|                          |                                     |                 | (3 A g <sup>-1</sup> )              | (30 A g <sup>-1</sup> )   | work |

**Table S1** Integration of specific capacitance and rate capabilities of various electrodes

reported previously based on Fe-based anode materials.



**Fig. S4** (a) Cycling performance of pure  $FeS_2$  and  $FeS_2/GNS$  electrodes measured at 20 A g<sup>-1</sup> for 5000 cycles. (b) Cycling graph of pure  $FeS_2$  and  $FeS_2/GNS$  electrodes at different current densities. (c) TEM image of  $FeS_2/GNS$  electrode after cycling test for 2500 cycles.



Fig. S5 (a) Schematic illustration of the synthesis process of hierarchical  $Ni(OH)_2@Co_9S_8$  composite. SEM images of (b, c) precursor and (d, e)  $Co_9S_8$ .



Fig. S6 XRD patterns of (a)  $Co_9S_8$  and precursor, (b)  $Ni(OH)_2$  and  $Ni(OH)_2@Co_9S_8$  composite.



Fig. S7 (a)  $N_2$  adsorption-desorption isotherms and (b) pore size distribution of the precursor,  $Co_9S_8$  and  $Ni(OH)_2@Co_9S_8$  composite.



Fig. S8 XPS spectra of (a) survey, (b) Co 2p, (c) Ni 2p, (d) S 2p and (e) O 1s.



**Fig. S9** (a) CV curves of Ni(OH)<sub>2</sub>@Co<sub>9</sub>S<sub>8</sub> electrode at various scan rates. (b) Galvanostatic charge-discharge curves of Co<sub>9</sub>S<sub>8</sub>, Ni(OH)<sub>2</sub> and Ni(OH)<sub>2</sub>@Co<sub>9</sub>S<sub>8</sub> electrodes at the same current density of 10 A g<sup>-1</sup>. (c) Cycling performance of the Ni(OH)<sub>2</sub>@Co<sub>9</sub>S<sub>8</sub> electrode measured at 20 A g<sup>-1</sup> for 5000 cycles. (d) TEM image of Ni(OH)<sub>2</sub>@Co<sub>9</sub>S<sub>8</sub> electrode after cycling test for 5000 cycles .

| Hybrid supercapcitor device                                                                        | Electrolyte                                                           | Voltage<br>(V) | Energy density<br>(Wh kg <sup>-1</sup> ) | Power<br>density                      | Ref.         |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------|------------------------------------------|---------------------------------------|--------------|
| CoMoO4@NiMoO4                                                                                      | KOH-PVA                                                               | 1.6            | 41.8                                     | ( <b>kW kg</b> <sup>-1</sup> )<br>0.7 | 9            |
| xH <sub>2</sub> O//Fe <sub>2</sub> O <sub>3</sub>                                                  |                                                                       |                |                                          |                                       |              |
| MnO <sub>2</sub> //Fe <sub>2</sub> O <sub>3</sub>                                                  | LiClO <sub>4</sub> -PVA                                               | 2.0            | 41                                       | 2.1                                   | 10           |
| MWCNTs/MnO <sub>2</sub> //Fe <sub>2</sub> O <sub>3</sub>                                           | K <sub>3</sub> [Fe(CN) <sub>6</sub> ]-Na <sub>2</sub> SO <sub>4</sub> | 2.0            | 54.39                                    | 0.667                                 | 11           |
| FeOOH//Co-Ni double<br>hydroxides                                                                  | KOH-PVA                                                               | 1.6            | 86.4                                     | 11.6                                  | 12           |
| NiOOH/Ni <sub>3</sub> S <sub>2</sub> /3D<br>graphene//Fe <sub>3</sub> O <sub>4</sub> /<br>graphene | KOH-PVA                                                               | 1.6            | 82.5                                     | 0.93                                  | 13           |
| Co-Fe <sub>3</sub> O <sub>4</sub> NS@NG//<br>CoMnO <sub>3</sub> NG                                 | 3 М КОН                                                               | 1.8            | 89.1                                     | 0.901                                 | 14           |
| MnO <sub>2</sub> /CC//<br>γ-FeOOH/CC                                                               | 1 M Li <sub>2</sub> SO <sub>4</sub>                                   | 1.8            | 37.4                                     | 16                                    | 15           |
| NiMoO4//FeOOH                                                                                      | 2 M KOH                                                               | 1.7            | 104                                      | 1.27                                  | 16           |
| GF-CNT@Fe2O3//<br>GF-CoMoO4                                                                        | 2 M KOH                                                               | 1.6            | 74.7                                     | 1.4                                   | 17           |
| NiCo <sub>2</sub> O <sub>4</sub> /NiO//Fe <sub>2</sub> O <sub>3</sub>                              | 1 M KOH                                                               | 1.6            | 19                                       | 0.157                                 | 18           |
| SiC@NiCo <sub>2</sub> O <sub>4</sub> /Ni(OH) <sub>2</sub> //SiC<br>@Fe <sub>2</sub> O <sub>3</sub> | 2 M KOH                                                               | 1.8            | 45                                       | 26.1                                  | 19           |
| NiO//α-Fe <sub>2</sub> O <sub>3</sub>                                                              | 1 M KOH                                                               | 1.25           | 12.4                                     | 0.951                                 | 20           |
| FeS2/GNS//<br>Ni(OH)2@C09S8                                                                        | PAAS-KOH                                                              | 1.7            | 95.8                                     | 0.949                                 | This<br>work |

**Table S2** Integration of electrochemical performance of various ASC and hybrid

 supercapacitor devices based on Fe-based anode materials reported recently.



Fig. S10 Cycling performance of the hybrid supercapacitor device measured at 15 A g<sup>-</sup>

<sup>1</sup> for 5000 cycles.

## Reference

- 1. J. Chen, Y. Li, L. Huang, C. Li and G. Shi, *Carbon*, 2015, **81**, 826-834.
- H. Fan, R. Niu, J. Duan, W. Liu and W. Shen, ACS Appl. Mater. Interfaces, 2016, 8, 19475-19483.
- 3. R. Kumar, R. K. Singh, A. R. Vaz, R. Savu and S. A. Moshkalev, *ACS Appl. Mater. Interfaces*, 2017, **9**, 8880-8890.
- 4. Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie and H. Xia, *Adv. Funct. Mater.*, 2017, **27**, 1606728.
- 5. L.-F. Chen, Z.-Y. Yu, J.-J. Wang, Q.-X. Li, Z.-Q. Tan, Y.-W. Zhu and S.-H. Yu, *Nano Energy*, 2015, **11**, 119-128.
- 6. Q. Wang, L. Jiao, H. Du, Y. Wang and H. Yuan, *J. Power Sources*, 2014, **245**, 101-106.
- 7. H. Wang, Z. Xu, H. Yi, H. Wei, Z. Guo and X. Wang, *Nano Energy*, 2014, 7, 86-96.
- 8. G. Nie, X. Lu, M. Chi, Y. Zhu, Z. Yang, N. Song and C. Wang, *Electrochim. Acta*, 2017, **231**, 36-43.
- J. Wang, L. Zhang, X. Liu, X. Zhang, Y. Tian, X. Liu, J. Zhao and Y. Li, *Sci. Rep.*, 2017, 7, 41088.
- 10. N. R. Chodankar, D. P. Dubal, G. S. Gund and C. D. Lokhande, *Energy Tech.*, 2015, **3**, 625-631.
- 11. N. R. Chodankar, D. P. Dubal, A. C. Lokhande, A. M. Patil, J. H. Kim and C. D. Lokhande, *Sci. Rep.*, 2016, **6**, 39205.
- 12. J. Chen, J. Xu, S. Zhou, N. Zhao and C.-P. Wong, *Nano Energy*, 2016, **21**, 145-153.
- 13. T. W. Lin, C. S. Dai and K. C. Hung, *Sci. Rep.*, 2014, **4**, 7274.
- 14. M. Guo, J. Balamurugan, X. Li, N. H. Kim and J. H. Lee, *Small*, 2017, 13.
- 15. Y. C. Chen, Y. G. Lin, Y. K. Hsu, S. C. Yen, K. H. Chen and L. C. Chen, *Small*, 2014, **10**, 3803-3810.
- K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou and L. Mai, *Nat. Commun.*, 2017, 8, 14264.
- 17. C. Guan, J. Liu, Y. Wang, L. Mao, Z. Fan, Z. Shen, H. Zhang and J. Wang, *ACS Nano*, 2015, 5198-5207.
- 18. A. Shanmugavani and R. K. Selvan, *Electrochim. Acta*, 2016, **189**, 283-294.
- 19. J. Zhao, Z. Li, X. Yuan, Z. Yang, M. Zhang, A. Meng and Q. Li, *Adv. Energy Mater.*, 2018, 1702787.
- 20. S. Zhang, B. Yin, Z. Wang and F. Peter, *Chem. Eng. J.*, 2016, **306**, 193-203.