Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material

CO₂-promoted hydrogen production in a protonic ceramic electrolysis cell

Nikolay Danilov,^{a,b} Julia Lyagaeva,^{a,b} Arthem Tarutin,^{a,b} Gennady Vdovin,^a Dmitry Medvedev^{*a,b}

 ^a Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, Yekaterinburg 620137, Russia
^b Ural Federal University, Yekaterinburg 620002, Russia
*E-mail: dmitrymedv@mail.ru

Experimental

Materials synthesis

The BaCe_{0.3}Zr_{0.5}Dy_{0.2}O₃₋₆ (BCZDy) powder material was prepared by a citrate-nitrate combustion route, using Ba(NO₃)₂, Ce(NO₃)₃·6H₂O, Dy(NO₃)₃·5H₂O, ZrO(NO₃)₂ as initial components with purity not less than 99.5%. They were taken in the strictly required amounts and dissolved in distilled water until complete salts dissolution. The obtained solution was heated at 80 °C and then citric acid was added in a mole amount exceeding by 2 times a total metal cations amount. A pH value of the solution around 7.0 was regulated by adding ammonia water. The resulting solution was heat-treated at 250 °C until self-ignition and producing a high disperse brown powder. The latter was calcined at 700 °C (1 h) to remove organic substances, pre-synthesized at 1050 °C (5 h) to reach material crystallization and synthesized at 1150 °C (5 h) to obtain the single-phase product; each temperature treatment was accompanied by powder milling. To ensure good densification behavior of the electrolyte and to suppress the refractory nature of Zr^{4+} , a sintering additive of CuO was added in a small amount (0.5 wt%) after citric acid dissolution.

The Nd_{1.95}Ba_{0.05}NiO_{4+ δ} (NBN) powder material was prepared using a similar method, differing only by temperature treatments: 700 °C (1 h), 900 °C (3 h) and 1100 °C (5 h) for calcination, presynthesis and synthesis steps, respectively.

Materials characterization

The synthesized materials were analyzed by the X-ray diffraction (XRD) method. The data were obtained using the Rigaku Co. Ltd. D/MAX-2200 diffractometer [S1] under the following conditions: CuK_{α} radiation, within $20 \le 2\theta$,° ≤ 80 range, with a 2° min⁻¹ scan rate and a 0.02° scan step. The XRD analysis was performed for the individual materials, for the BCZDy/NBN powder mixture to confirm chemical compatibility and BCZDy treated at 700 °C (5 h) by air passed through the boiling water and 100% CO₂ to check chemical stability in the aggressive media.

The images of morphology of the electrochemical cell's cross-section were obtained using scanning electron microscopy (SEM) method, a microscope TESCAN MIRA 3 LMU [S1].

The PCEC fabrication and characterisation

The protonic ceramic electrolysis cell (PCEC) was fabricated using a tape calendering method [S2], which is based on the co-rolling of the films consisted of the corresponding (BCZDy, NiO–BCZDy) powders in a special organic binder. Then the co-rolled films were treated at 900 °C (slow heating and cooling) to burn the carbon and organic components and then sintered at 1450 °C (5 h) to form the half-cell. To produce the single PCEC, the NBN–BCZDy slurry (7:3 wt ratio) was painted onto the electrolyte surface of the half-cell and sintered at 1100 °C for 1 h. No electrocatalytic methods (exsolution, infiltration) were used to improve the activity of the oxygen electrode.

The PCEC's performance was analyzed at 700 °C varying gas compositions at the both cathode and anode sides. The air with different water vapor partial pressure values ($pH_2O = 0.01$, 0.03,

0.1, 0.2 and 0.3 atm) was used as an oxidizing atmosphere, while wet hydrogen with different carbon dioxide partial pressure ($pCO_2 = 0$, 0.5, 0.7, 0.8 and 0.9 atm, $pH_2O = 0.03$ atm) was used as a reducing atmosphere. The pH_2O level was regulated by passing the gases through a bubbler heated at a specified temperature to reach desirable saturation. The pCO_2 level was regulated by mixing the H₂ and CO₂ fluxes, taking into account their flow rates. The flow rates of oxidizing and reducing gases were equal to 30 and 100 ml min⁻¹, respectively.

The electrochemical characterization was performed by means of a potentiostat/galvanostat Amel M2550 (Italy) and a FRA box MaterialsM Instruments (Italy). Volt-ampere curves were recorded within an applied voltage range from open circuit voltage (OCV) to 1.6 V and a step of 0.025 mV. Impedance spectra were obtained at three bias voltages (1.0, 1.3 and 1.6 V) in a frequency range of 10^{-1} – 10^{5} Hz and amplitude signal of 15–20 mV. The impedance data were analyzed by the means of equivalent circuit models (Zview software) and distribution of relaxation times (DRT) method [S3].

Tables

Table S1 Comparison of PCECs' performance: h is the thickness, T is the temperature, R_t , R_o and R_p are the total, ohmic and polarization resistances at open circuit voltage mode (i = 0 A cm²) or *thermoneutral voltage mode (bias is equal ~1.3 V), i is the current density at U = 1.3 V, $i_{eff.}^*$ is the effective current density of PCECs based on the electrolytes with thickness reduced to 10 μ m.

Electrolyte		Anodo composition	Gas composition		T°C	R _t ,	R _o ,	R _p ,	i,	i _{eff.} ,	Pof
Composition	h, μm	Anode composition	Anode	Cathode	1, C	$\Omega \ cm^2$	$\Omega \ cm^2$	$\Omega \ cm^2$	mA cm ²	mA cm ²	nel.
BCZDy	50	NBN–BCZDy (7:3)	30%H ₂ O/air	3%H ₂ O/H ₂	700	0.67*	0.50*	0.17*	542	1345	This work
BCZDy	50	NBN–BCZDy (7:3)	30%H ₂ O/air	3%H ₂ O/(50H ₂ +50CO ₂)	700	0.64*	0.49*	0.15*	628	1620	This work
BCZY0.3	20	SSC-BCZY0.3 (7:3)	30%H ₂ O/air	H ₂	700	0.93*	0.52*	0.41*	380	530	[S4]
BCZYZ	75	LSMC–BCZYZ (65:35)	3%H ₂ O/N ₂	5%H ₂ /Ar	700	0.89*	0.71*	0.18*	993	3200	[S5]
BCZYZ	60	F–BCZYZ (65:35)	3%H ₂ O/H ₂	100%CO2	614	-	-	-	315	-	[S6]
BZY	15	LSCF-BZY	3%H₂O/air	4%H ₂ /Ar	700	-	-	-	207	-	[S7]
BCZY0.1	15	$La_{1.2}Sr_{0.8}NiO_{4+\delta}$	20%H ₂ O/air	3%H ₂ O/H ₂	700	0.49	0.22	0.27	1370	1610	[S8]
BCZY0.1	15	SEFC-BCZY0.1 (95:5)	10%H ₂ O/air	3%H ₂ O/H ₂	700	0.45	0.33	0.12	1050	1390	[S9]

Electrolyte abbreviations: BCZDy = BaCe_{0.3}Zr_{0.5}Dy_{0.2}O_{3- δ}, BCZYO.3 = BaCe_{0.5}Zr_{0.3}Y_{0.2}O_{3- δ}, BCZYZ = BaCe_{0.5}Zr_{0.3}Y_{0.16}Zn_{0.04}O_{3- δ}, BZY = BaZr_{0.8}Y_{0.2}O_{3- δ}, BCZYO.1 = BaCe_{0.7}Zr_{0.1}Y_{0.2}O_{3- δ}.

Electrode abbreviations: NBN = Nd_{1.95}Ba_{0.05}NiO_{4+ δ}, SSC = Sm_{0.5}Sr_{0.5}CoO_{3- δ}, LSMC = (La_{0.75}Sr_{0.25})_{0.95}Mn_{0.5}Cr_{0.5}O_{3- δ}, F = Fe₂O₃, LSCF = La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3- δ}, SEFC = SrEu₂Fe_{1.8}Co_{0.2}O_{7+ δ}.

^{*} Since the listed data were obtained for PCECs with different design and materials, their performance can be compared estimating the $i_{eff.}$ values for the cells with the same electrolyte thickness. These values were calculated on the base of the following assumptions: (i) the electrolyte thickness is reduced to 10 µm, (ii) current density is inversely proportional to R_t , (iii) R_p does not change with varying the electrolyte thickness, and (iv) h and R_0 values are decreased by the same magnitude, which follows from the constant conductivity level of the electrolyte membranes ($\sigma = h/R_0$). The highest $i_{eff.}$ for the cell studied in ref. [S5] can be associated with either an overestimated current density or a high error in the assumptions drawn.

Partial press	ures in initial gas	mixture, atm	Equilibrium partial pressures, atm						
pH₂O	pH ₂	pCO ₂	pH₂O	pH₂	pCO ₂	рСО			
0.03	0.97	-	0.03	0.97	-	-			
0.03	0.485	0.485	0.235*	0.280	0.280	0.205			
0.03	0.291	0.679	0.205	0.116	0.504	0.175			
0.03	0.194	0.776	0.166	0.058	0.640	0.136			
0.03	0.097	0.873	0.109	0.018	0.794	0.079			

Table S2 Equilibrium concentration of gas components[†] at 700 °C depending on the initial gas mixture composition supplied to the cathode side.

The highest pH_2O value is marked by *.

 $CO+H_2O\Box$ CO_2+H_2

and its equilibrium constant at 973.15 K.

[†] The equilibrium partial pressures of components were calculated according to law of mass action for the water gas shift reaction

Fig. S1 XRD patterns for the as-sintered $BaCe_{0.3}Zr_{0.5}Dy_{0.2}O_{3-\delta}$ sample and ones treated by ~100% H₂O and 100% CO₂ at 700 °C for 5 h.

Fig. S2 Performance of the developed PCEC at 700 °C in term of its total cell resistance (R_t) as a function of current density (a,c) or applied voltage (b,d) at different pH₂O at the anode side (a,b) and pCO₂ at the cathode side (c,d). The R_t values were calculated on the base of the differential forms of volt-ampere dependences.

Fig. S3 DRT analysis of EIS data (a–c). The description is similar with **Fig. 3**; (d) the frequency ranges (high, medium and low) and corresponding electrode processes.^{S10–S12}

Fig. S4 Total resistance of the NBN–BCZDy|BCZDy|Ni-BCZDy electrolysis cell at 700 °C and the different bias depending on pH₂O at the anode side (a) and pCO₂ at the cathode side (b).

Fig. S5 Total polarization resistances of the electrodes and its high frequency (R_1) and medium frequency (R_2) components as a function of pCO₂ at the cathode side under the bias of 1.3 V. Lines are indicated for convenience of data perception.

References

[S1] http://www.ihte.uran.ru/?page_id=3142.

[S2] D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin, P. Tsiakaras, *Electrochim. Acta*, 2016, **210**, 681.

[S3] E. Ivers-Tifee, A. Weber, J. Ceram. Soc. Jap., 2017, 125, 193.

[S4] F. He, D. Song, R. Peng, G. Meng, S. Yang, J. Power Sources, 2010, 195, 3359.

[S5] Y. Gan, J. Zhang, Y. Li, S. Li, K. Xie, J.T. S. Irvine, J. Electrochem. Soc., 2012, 159, F763.

[S6] K. Xie, Y. Zhang, G. Men, J.T.S. Irvine, J. Mater. Chem., 2011, 21, 195.

[S7] L. Bi, S.P. Shafi, E. Traversa, J. Mater. Chem. A, 2015, **3**, 5815.

[S8] S. Yang, Y. Wen, J. Zhang, Y. Lu, X. Ye, Z. Wen, *Electrochim. Acta*, 2018, 267, 269.

[S9] D. Huan, N. Shi, L. Zhang, W. Tan, Y. Xie, W. Wang, C. Xia, R. Peng, Y. Lu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 1761.

[S10] S. Sun, Z. Cheng, J. Electrochem. Soc., 2017, 164, F3104.

[S11] M. Zheng, S. Wang, Y. Yang, C. Xia, J. Mater. Chem. A, 2018, 6, 2721.

[S12] N. Shi, F. Su, D. Huan, Y. Xie, J. Lin, W. Tan, R. Peng, C. Xia, C. Chen, Y. Lu, *J. Mater. Chem. A*, 2017, **5**, 19664.