Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Mimicking anthocephalus cadamba shaped FeNi encapsulated carbon nanostructures

for metal-air batteries as resilient bifunctional oxygen electrocatalyst

Ravi Nandan,^a Ajay Gautam^a and Karuna Kar Nanda^{a,*}

^aMaterials Research Centre, Indian institute of Science, Bangalore-560012, India.

Fax: +91-80-2360 7316; Ph: +91-80-2293 2996

*E-mail: nanda@iisc.ac.in (Prof. K. K. Nanda)

Figure S1. Schematic representation of FNMR (M= 3, 10, 25, 40) synthesis. The close end of the precursor loaded quartz tube was kept at the middle position of the furnace followed by pyrolysis at 750 °C for 1.1 h.

Figure S2. Deconvoluted HRXPS core spectra of FN3R for (a) C1s, (b) N1s, (c) Fe (2p) and (d) Ni2p, respectively.

Figure S2a shows the deconvoluted C1s core spectrum of FN3R comprises of peaks centred around 284.4, 285.3, 286.6 and 288.1 eV which can be assigned to to sp^2 -*C*, sp^2 *C*-*N*, sp^3 *C*-*N* and carbon-oxygen functionalities, respectively.¹⁻³ Depending upon the nitrogen chemical environment and interactions with other elements, the deconvolution of N1s spectrum suggests the presence of pyridinic (N1~397.4), pyrrolic (N3~399.2 eV), quaternary (N4~400.2 eV) and some oxygenated nitrogen (N5~403.7 eV) functionalities, in addition to the metal-nitrogen coordinated functionalities M-NxC (M= Fe, Ni) with characteristic binding energy of 398.6±0.3 eV (N2).¹⁻⁴ The deconvolution of Fe2p core spectrum (Figure. S2c) suggests the presence of the peaks centred around 706.6, 709.7, 711.7 eV can be attributed to the Fe^o, Fe²⁺, Fe³⁺ 2p_{3/2} state whereas peaks centred around 719.4, 723, 724.6 eV can be attributed to the Fe^o, Fe²⁺, Fe³⁺ 2p_{1/2} states.¹⁻⁸ Besides, Fe²⁺ satellite peaks at 714.6 eV (2p_{3/2}) and 726.8 ev (2p_{1/2}) has been

observed.⁶ Similarly, the peaks centred around 856.6, 859.5 eV can be attributed to the Ni²⁺, Ni³⁺ $2p_{3/2}$ state whereas peaks centred around 871.4, 874.6 eV can be attributed to the Ni²⁺, Ni³⁺ $2p_{1/2}$ states.⁶⁻¹³ In addition, Ni²⁺ satellite peaks at 861.8 eV ($2p_{3/2}$) and 877.4 ev ($2p_{1/2}$) has been also observed.⁶

Figure S3. Deconvoluted HRXPS core spectra of FN10R for (a) C1s, (b) N1s, (c) Fe (2p) and (d) Ni2p, respectively.

Figure S3a shows the deconvoluted C1s core spectrum of FN10R comprises of peaks centred around 284.48, 285.4, 286.8 and 288.6 eV which can be assigned to to sp^2 -*C*, sp^2 *C*-*N*, sp^3 *C*-*N* and carbon-oxygen functionalities, respectively.¹⁻³ Depending upon the nitrogen chemical environment and interactions with other elements, the deconvolution of N1s spectrum (Figure. S3b) suggests the presence of pyridinic (N1~397.4), pyrrolic (N3~399.7 eV), quaternary (N4~401 eV) functionalities, in addition to the metal-nitrogen coordinated functionalities M-

NxC (M= Fe, Ni) with characteristic binding energy of 398.6 ± 0.3 eV (N2).¹⁻⁴ The deconvolution of Fe2p core spectrum (Figure S3c) suggests the presence of the peaks centred around 705.4, 709.3, 711.6 eV can be attributed to the Fe^o, Fe²⁺, Fe³⁺ 2p_{3/2} state whereas peaks centred around 717.1, 723.2, 725.4 eV can be attributed to the Fe^o, Fe²⁺, Fe³⁺ 2p_{1/2} states.¹⁻⁸ Similarly, the peaks centred around 853.5, 855.2, 858.5 eV can be attributed to the Ni^o, Ni²⁺, Ni³⁺ 2p_{3/2} state whereas peaks centred around 871.2, 873.9, 877.3 eV can be attributed to the Ni^o, Ni²⁺, Ni³⁺ 2p_{1/2} states.⁶⁻¹³ In addition, Ni²⁺ satellite peaks at 862.7 eV (2p_{3/2}) and 88.2 ev (2p_{1/2}) has been also observed.⁶

Figure S4. Deconvoluted HRXPS core spectra of FN40R for (a) C1s, (b) N1s, (c) Fe (2p) and (d) Ni2p, respectively.

Figure S4a shows the deconvoluted C1s core spectrum of FN40R comprises of peaks centred around 283.9, 284.5, 285.5, 286.8, 286.5, 287.7 and 289.4 eV which can be assigned to to *Fe*-

C, sp²-*C*, sp² *C*-*N*, sp³ *C*-*N*, carbon-oxygen (C-O-C) functionalities and π - π * satellite peak, respectively.¹⁻³ Depending upon the nitrogen chemical environment and interactions with other elements, the deconvolution of N1s spectrum (Figure. S4b) suggests the presence of pyridinic (N1~398), pyrrolic (N3~399.8 eV) and quaternary (N4~400.7 eV) functionalities, in addition to the metal-nitrogen coordinated functionalities M-NxC (M= Fe, Ni) with characteristic binding energy of 398.6±0.3 eV (N2).¹⁻⁴ The deconvolution of Fe2p core spectrum (Figure. S4c) suggests the presence of the peaks centred around 707.8, 710.6, 713.1 eV can be attributed to the Fe^o, Fe²⁺, Fe³⁺ 2p_{3/2} state whereas peaks centred around 719, 723.8, 725.8 eV can be attributed to the Fe^o, Fe²⁺, Fe³⁺ 2p_{1/2} states.¹⁻⁸ Besides, a Fe²⁺ satellite peak at 715.2 eV (2p_{3/2}) has been observed.⁶ Similarly, the peaks centred around 853.1, 855.1, 857.2 eV can be attributed to the Ni^o, Ni²⁺, Ni³⁺ 2p_{1/2} states.⁶⁻¹³ In addition, Ni²⁺ satellite peak at 861.7 eV (2p_{3/2}) has been also observed.⁶

Electrocatalyst	Carbon (at. %)	Nitrogen (at. %)	Iron (at. %)	Nickel (at. %)
FN3R	90.9	8.1	0.8	0.2
FN10R	89.6	8.4	0.9	1.1
FN25R	84.6	10.8	3.9	0.7
FN40R	90.3	8	0.8	0.9

Table S1. Elemental composition of FNMR (M=3, 10, 25, 40) evaluated from XPS spectra.

Figure S5. Cyclic voltammograms recorded in non-Faradic region for double layer capacitance calculation in 1 M NaOH nitrogen-purged aqueous solution at different scan rate (10-100 mV/s) for (a) FN3R, (b) FN10R, (c) FN25R and (d) FN40R, respectively.

Figure S6. Correlation between BET specific surface area and ECSA. The BET specific surface area is in consistent with the ECSA of FNMR. The line is the guide for eye.

Figure S7. Nyquist plots on (a) FNMR (M=3, 10, 25, 40) and on (b) Pt-C and RuO₂ in 1 M NaOH aquous solution at 1.5 V vs RHE.

Figure S8. OER polarization curves (50th and 2000nd cycles) recorded on FN25R during accelerated stability test in alkaline (1 M NaOH) medium at rotation speed of 1200 rpm and 100 mV/s scan speed.

Figure S9. (a) Tafel slope evaluation on FNMR (M= 3, 10, 25, 40) deduced from LSV-ORR polarization curves (from figure 5a) in low over potential region (figure b, magnified portion as marked in figure a).

Figure S10. ORR polarization curves (50th and 2000nd cycles) recorded on FN25R during accelerated stability test in alkaline (0.1 M NaOH) medium at rotation speed of 1200 rpm and 100 mV/s scan speed.

Figure S11. (a) SEM image and (b) XRD pattern recorded on FN25R after ORR-AST study suggest the retaining of structure. The XRD patterns suggests that FeNi nanoparticles present in FN25R preserved the face-centred cubic phase as evident by characteristic reflections arising from (111), (200) and (220) planes of FeNi nanoparticles.

Table S2. OER activity summary for various carbon-based electrocatalysts in alkaline medium.

Electrocatalyst	Electrocatalyst	E _{on-set} (mV)	E _{J=10} (mV)	Reference
	loading	Vs Ag/AgCl	Vs Ag/AgCl	
CoFe ₂ O ₄ /rGO	1.006 mg/cm ²	540	700	Journal of Power Sources
				250 (2014) 196-203
FeCo ₂ O ₄ -HrGOS	1.006 mg/cm ²	570	750	Carbon 92 (2015) 74–83
CoFe ₂ O ₄ /CNTs	1.006 mg/cm ²	600	700	Electrochimica Acta 177
				(2015) 65–72
MWCNT@S-N-C	0.200 mg/cm ²	600	700	New J. Chem., 2015, 39,
				62896296
S,N,Fe-porous	0.100 mg/cm ²		650	Green Chem., 2016, 18 ,
carbon				4004-4011
N-doped Fe-Fe₃C@	0.710 mg/cm ²	600	778	Green Chemistry 18
graphitic layer				(2016), 427-432
Nitrogen-doped	0.103 mg/cm ²	500	850	Chem. Commun., 2015,
Fe/Fe ₃ C@graphitic				51, 2710-2713
layer/carbon				
nanotube				
NiCo ₂ S ₄ @N/SrGO	0.283 mg/cm ²	600	720	ACS Appl. Mater.
	0,-		_	Interfaces, 2013, 5 (11),
				pp 5002–5008
Fe ₃ C-NCNTs co-	0.75 mg/cm ²	422	562	J. Mater. Chem. A, 2017, 5 ,
embedded boron				16843-16853
doped carbon				
Fe₃C-FeNx	1 mg/cm ²	380	550	J. Mater. Chem. A, 2018,
enriched carbon				6, 8537
sphere				
FN10R	0.4 mg/cm ²	465	545	Present study
FN25R	0.4 mg/cm ²	375	495	Present study

Table S3. ORR activity summary for various carbon-based electrocatalysts in alkaline medium.

Electrocatalyst	Electrocatalyst loading	Eon-set (mV) Vs	E1/2 (Vs Ag/AgCl)	Reference
		(Ag/AgCl)		
MWCNT@S-N-C	0.1 mg/cm ²	-200	~-350	New J. Chem., 2015, 39, 62896296
CoFe ₂ O ₄ /CNTs	1.006 mg/cm ²	-124	~ -300	Electrochimica Acta 177 (2015) 65–72
CoFe2O4/rGO	1.006 mg/cm ²	-136	~ -260	Journal of Power Sources 250 (2014) 196e203
Co–N–GN	0.1 mg/cm ²	-98	-162	<u>J. Mater. Chem. A,</u> 2013, 1 , 3593-3599
N,P,S-rGO/ <i>E. coli</i>	0.510 mg/cm ²	-90	~ -220	J. Mater. Chem. A 2015,3, 12873-12879
FeCo ₂ O ₄ -HrGOS	1.006 mg/cm ²	-90	~ -200	Carbon 92 (2015 74- 83
N-graphene/CNT hybrids	0.430 mg/cm ²	-80	~ -200	Angew. Chem. Int. Ed. 2014, 53, 6496 - 6500
N-CNTs	0.306 mg/cm ²	-60	-220	Carbon 50 (2012) 2620-2627
N,S-Graphene	0.43 mg/cm ²	-60	-300	Angew. Chem., Int. Ed., 2012, 51, 11496
Fe₃C-NCNTs co- embedded boron doped carbon	0.75 mg/cm ²	-30	-225	<u>J. Mater. Chem. A</u> , 2017, 5 , 16843-16853
FN10R	0.4 mg/cm ²	-65	-265	Present study
FN25R	0.4 mg/cm ²	-27	-154	Present study

Table S4. Overall oxygen electroactivity (ΔE) summary for various carbon-basedelectrocatalysts in alkaline medium.

Catalyst	Overall oxygen	Reference
	electrochemistry	
	$\Delta E (E_{j=10(OER)} -$	
	E _{1/2(ORR)})(V)	
S-N-C@MWNCNTs	~1.25	New J. Chem. 2015, 39, 6289.
NCNF-1000	~1.02	Adv. Mater. 2016, 28, 3000-3006.
Fe/Fe3C@NGL-NCNT	~1	Chem. Commun. 2015, 51, 2710.
N-Graphene/CNTs	~1.00	Small, 2014, 10, 2251.
B-MWNCNTs	~1.00	Electrochimica Acta 2014,143, 291.
CoFe ₂ O ₄ /rGO	~0.98	J. Power Sources 2014, 250, 196.
CoFe ₂ O ₄ /N-P-biocarbon	~0.98	J. Mater. Chem. A 2014,2,18012.
N,P-Carbon paper	~ 0.96	Angew. Chem. Int. Ed. 2015, 54, 4646.
P-doped g-C3N4 /CF	~0.96	Angew. Chem. Int. Ed. 2015, 54, 4646–4650.
Fe/Fe3C@ N-graphitic layer	~ 0.97	Green Chemistry 2015, DOI:
		10.1039/c5gc01405k
Pt@C	~0.94	Angew. Chem. Int. Ed. 2014, 53, 8508.
Mn _x O _y /N-Carbon	~0.93	Angew. Chem. Int. Ed. 2014, 53, 8508.
Ir@C	~0.92	J. Am. Chem. Soc. 2010,132, 3612.
NiCo ₂ O ₄ /Graphene	~0.915	J. Mater. Chem. A 2013,1,4754.
N, S, O carbon nanosheet	~0.88	Nano Energy 19 (2016) 373–381
Fe@N-C	~0.88	Nano Energy 2015, 13, 387–396.
NiO/CoN PINWs	~0.8	ACS Nano, 2017, 11 (2), pp 2275–2283
Fe/N/C@BMZIF	~0.79	ACS Appl. Mater. Interfaces, 2017, 9 (6), 5213-
		5221
Fe ₃ C-NCNTs co-embedded boron	~0.788	J. Mater. Chem. A, 2017, 5, 16843-16853
doped carbon		
Ni ₃ Fe/N-C sheets	0.84	Adv. Energy Mater. 2017, 7, 1601172
Fe ₃ C-FeNx enriched carbon sphere	~0.758	J. Mater. Chem. A, 2018, 6, 8537
FN25R	~0.71	Present study

References

- [1] R. Nandan, A. Gautam and K. K. Nanda, J. Mater. Chem. A, 2017, 5, 20252–20262;
- [2] R. Nandan, A. Gautam, S. Tripathi and K. K. Nanda, J. Mater. Chem. A, 2018, 8537– 8548.
- [3] R. Nandan and K. K. Nanda, J. Mater. Chem. A, 2017, 5, 16843–16853
- [4] M. Wang, T. Qian, J. Zhou and C. Yan, *ACS Appl. Mater. Interfaces*, 2017, **9**, 5213–5221.
- [5] J.-S. Li, S.-L. Li, Y.-J. Tang, M. Han, Z.-H. Dai, J.-C. Bao and Y.-Q. Lan, *Chem. Commun.*, 2015, **51**, 2710–2713.
- [6] X. Wang, X. Liu, C.-J. Tong, X. Yuan, W. Dong, T. Lin, L.-M. Liu and F. Huang, J. Mater. Chem. A, 2016, 4, 7762–7771.
- [7] L. Du, L. Luo, Z. Feng, M. Engelhard, X. Xie, B. Han, J. Sun, J. Zhang, G. Yin, C. Wang,
 Y. Wang and Y. Shao, *Nano Energy*, 2017, **39**, 245–252
- [8] F. W. Zhengping Zhang, Yeshen Qin, Meiling Dou, Jing Ji and State, *Nano Energy*, 2016, 30, 426–433.
- [9] C. Xuan, J. Wang, W. Xia, J. Zhu, Z. Peng, K. Xia, W. Xiao, H. L. Xin and D. Wang, J. Mater. Chem. A, 2018, 7062–7069.
- B. K. Kang, M. H. Woo, J. Lee, Y. H. Song, Z. Wang, Y. Guo, Y. Yamauchi, J. H. Kim,
 B. Lim and D. H. Yoon, *J. Mater. Chem. A Mater. energy Sustain.*, 2017, 5, 4320–4324.
- [11] H. Qiao, J. Yong, X. Dai, X. Zhang, Y. Ma, M. Liu, X. Luan, J. Cai, Y. Yang, H. Zhao and X. Huang, *J. Mater. Chem. A*, 2017, **5**, 21320–21327.
- [12] X. Long, Z. Ma, H. Yu, X. Gao, X. Pan, X. Chen, S. Yang and Z. Yi, *J. Mater. Chem.* A, 2016, 4, 14939–14943.
- [13] U. Y. Qazi, C. Z. Yuan, N. Ullah, Y. F. Jiang, M. Imran, A. Zeb, S. J. Zhao, R. Javaid and A. W. Xu, ACS Appl. Mater. Interfaces, 2017, 9, 28627–28634.