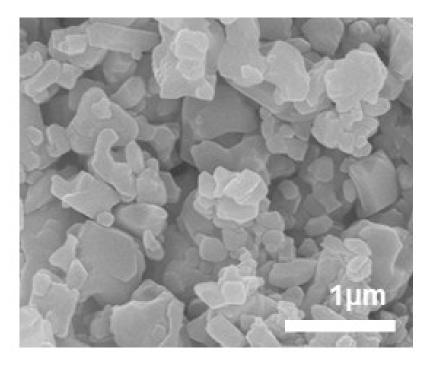
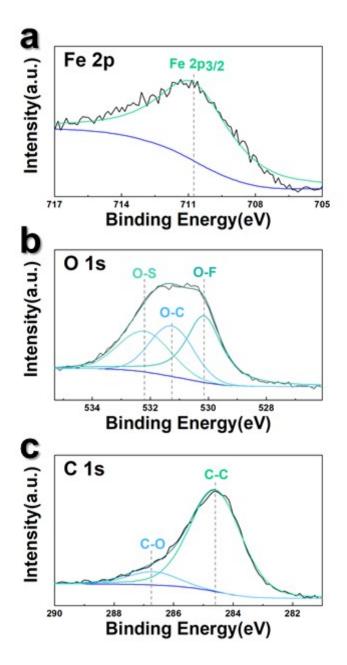
Supporting Information

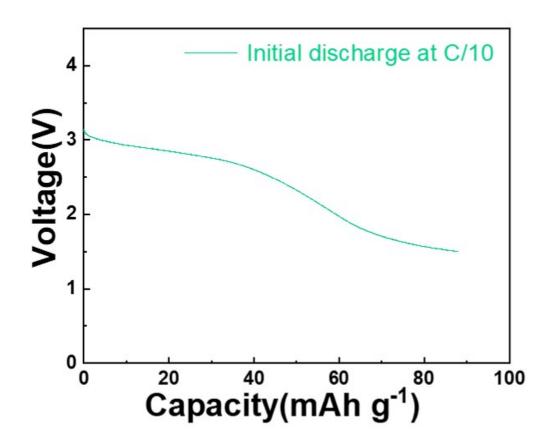
Na_{0.97}KFe(SO₄)₂: New iron-based sulfate cathode material with outstanding

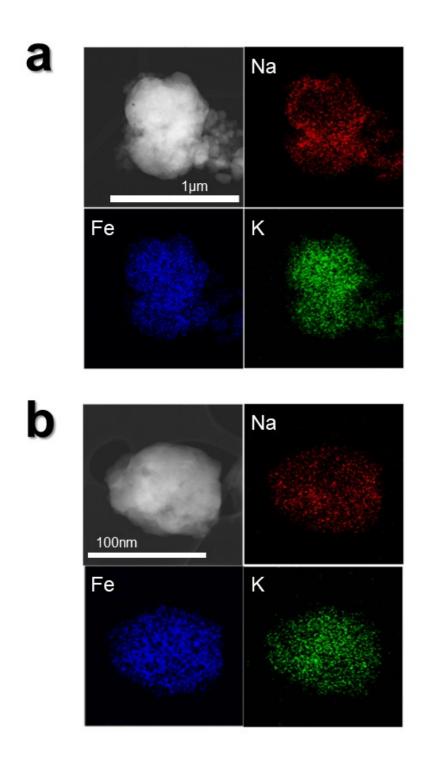

cyclability and power-capability for Na-ion batteries

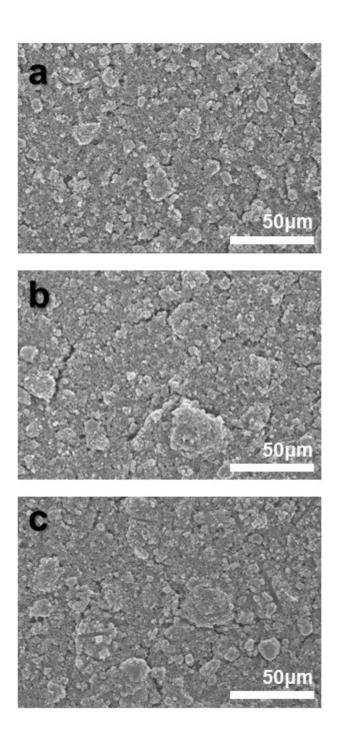
Wonseok Ko¹, Teahoon Park², Hyunyoung Park¹, Yongseok Lee¹, Kang Eun Lee², and Jongsoon Kim^{1, *}

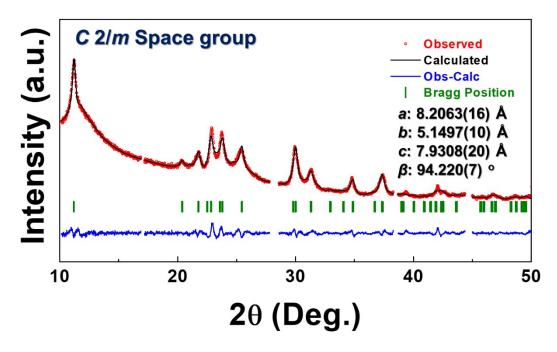

¹Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea.

²Carbon Composites Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon, Republic of Korea


Corresponding Authors: Prof. Jongsoon Kim (E-mail: jongsoonkim@sejong.ac.kr)


Supporting Figure S1. SEM image of bare KFe(SO₄)₂ powder.


Supporting Figure S2. XPS spectra of KFe(SO₄)₂. (a) Fe 2p peak as Fe 2p3/2 (710.8eV)¹, (b) O 1s peaks as O-S (532.2eV)², O-F (~529.9eV)² and O-C(532.1eV)³, (c) C 1s peaks as C-C (284.6eV)⁴ and C-O (286.75eV)⁵.


Supporting Figure S3 Initial discharge curve of Na_{0.97}KFe(SO₄)₂ measured at C/10

Supporting Figure S4 TEM EDS mapping of $Na_{0.97}KFe(SO_4)_2$ after (a) 200 cycles (atomic ratio of Na and K = 1.10 : 1) and (b) 2 cycles (atomic ratio of Na and K = 1.03 : 1).

Supporting Figure S5 SEM images of electrodes. (a) before cycling, (b) after 100 cycles, (c) after 200cycles.

Supporting Figure S6 Refined XRD pattern of after 200 cycles $Na_0KFe(SO_4)_2$ ($R_P = 2.47\%$,

 $R_I = 1.81\%$, $R_F = 1.25\%$, $\chi^2 = 2.02\%$)

Atom	Multiplicity	x	У	z	B _{iso}	Occupancy
Fe	2	0.00000	0.00000	0.00000	0.88(6)	1
к	2	0.00000	0.00000	0.50000	1.50(8)	1
s	4	0.3713(3)	0	0.2072(3)	0.79(7)	1
01	4	0.2466(6)	0	0.0719(6)	0.73(8)	1
02	4	0.3113(7)	0	0.3795(6)	0.73(8)	1
03	8	0.4726(4)	0.2332(5)	0.1875(4)	0.73(8)	1

Supporting Table T1. The structural information of KFe(SO₄)₂ using Rietveld refinement calculation.

	Na	к	Fe
Pristine sample	0	0.988(6)	0.998(3)
Fully discharged sample	0.989(5)	0.981(7)	0.995(5)
200 times cycled sample	0.987(6)	0.982(5)	0.996(3)

Supporting Table T2 ICP analyses on the atomic ratio of Na, K, Fe in the pristine sample, the fully discharged sample and the 200 times cycled sample of $Na_{0.97}KFe(SO_4)_2$ with standard deviation.

References

- 1. A. P. Grosvenor, B. A. Kobe, M. C. Biesinger and N. S. McIntyre, *Surface and Interface Analysis*, 2004, **36**, 1564-1574.
- 2. G. Beamson, D. Briggs, *High resolution XPS of organic polymers, the scienta ESCA300 database*, Wiley, 1992.
- D. H. Wang, Y. Hu, J. J. Zhao, L. L. Zeng, X. M. Tao and W. Chen, *Journal of Materials Chemistry A*, 2014, 2, 17415-17420.
- M. X. Wu, Q. B. Feng, X. Sun, H. L. Wang, G. Gielen and W. X. Wu, *Scientific Reports*, 2015, 5.
- 5. N. V. Bhat, D. J. Upadhyay, R. R. Deshmukh and S. K. Gupta, *Journal of Physical Chemistry B*, 2003, **107**, 4550-4559.