Supporting Information (7 pages)

Aluminum Enhances Photochemical Charge Separation in Strontium Titanate Nanocrystal Photocatalysts for Overall Water Splitting

Zeqiong Zhao,[†] Emma J. Willard,[†] Hui Li,[‡] Zongkai Wu,[†] Ricardo H. R. Castro,[‡] Frank E. Osterloh*,[†]

[†]Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States and [‡]Department of Materials Science and Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, United States

Figure S1 PXRD patterns of SrTiO₃ and Al:SrTiO₃ with different Al dopant amount obtained from hydrothermal synthesis with reference pattern for SrTiO₃ (JPDF #35-0734).

The unit cell change from nano-SrTiO₃ to 7.2 atom% nano-Al:SrTiO₃ is calculated based on Bragg's law. The ratio of 7.2 atom% nano-Al:SrTiO₃ unit cell to nano-SrTiO₃ unit cell is calculated based on Eq. (1) for all 7 peaks with 2θ from 20° to 70°. The average of 7 ratios shows that the unit cell of 7.2 atom% nano-Al:SrTiO₃ is 0.2% smaller than the unit cell of nano-SrTiO₃.

$$\frac{d(Al:SrTiO_3)}{d(SrTiO_3)} = \frac{\frac{sin^{[TO]}(\frac{2\theta(SrTiO_3)}{2})}{2\theta(Al:SrTiO_3)}}{\frac{2\theta(Al:SrTiO_3)}{2}}$$

Eq.

Figure S2 TEM images and size histograms of (a) nano-SrTiO₃ and nano-A1:SrTiO₃ with (b) 10%, (c) 20%, (d) 30%, (e) 50%, (f) 70% Al, (g) 90 atom% Al precursor added during the hydrothermal synthesis.

	SrO wt%	TiO ₂ wt%	Al ₂ O ₃ wt%	2 [Al] / ([Sr]+[Ti]+[Al])
10% Al	55.6	43.5	0.905	3.2 %
20% Al	54.9	43.8	1.27	4.5 %
30% Al	54.6	44	1.36	4.8 %
50% Al	53.8	44.4	1.72	6.1 %
70% Al	52.6	45.3	2.04	7.2 %
90% Al	53.4	44.4	2.21	7.8 %
micro-Al:SrTiO ₃	54.7	45.0	0.345	1.2%

Table S1 XRF Results for Al:SrTiO₃.

Figure S3 Irradiation results of 7.2% nano-Al:SrTiO₃ with variable amounts of $Rh_{2-y}Cr_yO_3$ cocatalyst in pure water under full spectrum of Xe lamp irradiation (240 mW/cm² by UV detector). Dots show H₂ amount while circles show O₂ amount.

Figure S4 Irradiation results of 1wt% Rh, 1.5 wt% Cr, $Rh_{2-y}Cr_yO_3$ loaded nano-Al:SrTiO₃ with different amount of Al in pure water under full spectrum of Xe lamp irradiation (240 mW/cm² by UV detector). Dots show H₂ amount while circles show O₂ amounts.

Figure S5 UV-Vis diffuse reflectance spectra of nano-Al:SrTiO₃ with variable Al³⁺ concentration with inset of their photos. The region from 1.25 eV to 3.25 eV is magnified to illustrate the weak absorption feature starting from 1.7 eV.

Figure S6 SPS spectra of nano-Al:SrTiO₃ with variable Al³⁺ concentration.

Calculation of the specific surface area for Al:SrTiO₃

The specific surface area (SSA) of the Al:SrTiO₃ catalyst was calculated assuming a cubic shape, with a as the length of the cube edge.

SSA =
$$\frac{6 \times a^2}{a^3} = \frac{6}{a}$$

Eq. (3)
$$SSA (nano - Al:SrTiO_3) = \frac{6}{59.5 \times 10^{-9}m} = 1.01 \times 10^8 \frac{m^2}{m^3}$$

Eq. (4)
$$SSA (flux - Al:SrTiO_3) = \frac{6}{343.4 \times 10^{-9}m} = 1.75 \times 10^7 \frac{m^2}{m^3}$$

To load same amount of co-catalyst per surface area on both nano-7.2% Al:SrTiO₃ and flux-Al:SrTiO₃,

Eq. (5)
$$\frac{co - catalyst (nano - Al:SrTiO_3)}{SSA(nano - Al:SrTiO_3)} = \frac{co - catalyst (flux - Al:SrTiO_3)}{SSA(flux - Al:SrTiO_3)}$$

Because nano-7.2% Al:SrTiO₃ is loaded with 1.0 wt% Rh and 1.5 wt% Cr, flux Al:SrTiO₃ is loaded with 0.17 wt% Rh, 0.26 wt% Cr, $Rh_{2-y}Cr_yO_3$ to achieve same co-catalyst coverage per surface area.

Figure S7 H_2/O_2 evolution from 0.1 wt% Rh, 0.1 wt% Cr, $Rh_{2-y}Cr_yO_3$ loaded ss-SrTiO₃ and micro-Al:SrTiO₃ in pure water under full spectrum Xe irradiation (320 mW/cm² by UV detector).

Table S2 Microprobe Results of micro-Al:SrTiO₃ microparticles.

	O At%	Al At%	Sr At%	Ti At%	2[Al]/ ([Sr]+[Ti]+[Al])*100%
micro-Al:SrTiO ₃ Microprobe	60.5±0.7	0.4±0.5	18.2±2.1	20.9±1.3	2.1 %