Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Support information

Conductive Molybdenum Carbide as the Polysulfide Reservoir for

Lithium Sulfur Batteries

Xianqing Zeng^{a†}, Xuehui Gao^{a†}, Gaoran Li^a, Minghao Sun^a, Zhan Lin^a, Min Ling^{a*}, Junchao Zheng^{b*}, Chengdu Liang^{a*}

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China, E-mail: minling@zju.edu.cn.

^b School of Metallurgy and Environment, Central South University, Changsha, China, 410083, China, E-mail: jczheng@csu.edu.cn.

[†] These authors contributed equally to this work.

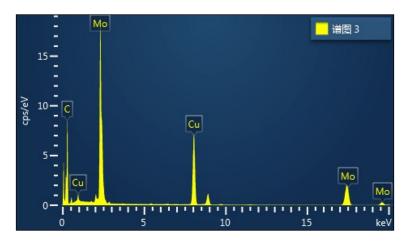
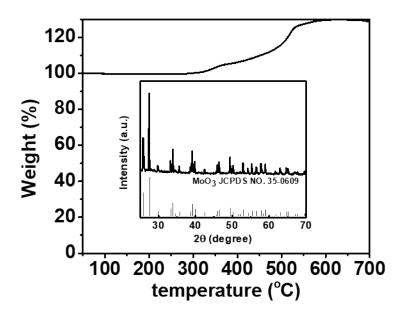



Fig. S1 EDS result of Mo_2C nanosheets.

 $\label{eq:Fig.S2} \textbf{Fig. S2} \ \text{TGA curves of Mo}_2\text{C in air atmosphere with a heating rate of } 10\ ^{\circ}\text{C min}^{-1}$ and XRD pattern of MoO_3.

Fig. S3 A custom-built 4-point probe measurement of the electronic conductivity for Mo_2C .

The sheet resistance (Rs) of the Mo_2C sample is $0.11\Omega\Box$, which tested by the four-point probe technique at room temperature. The thickness (t) of the Mo_2C sample determined by a micrometer is 3 mm. The electronic conductivity (C) of the sample is calculated by the following formula:

$$C = \frac{1}{Rs \times t \times 10^{-3}} = \frac{1}{0.11 \times 3 \times 10^{-3}} = 3 \times 10^{3}$$
 S m⁻¹

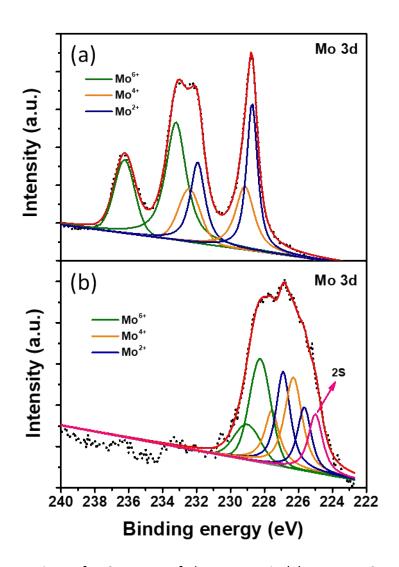


Fig. S4 Comparison of XPS spectra of element Mo in (a) pure Mo_2C and (b) Mo_2C / Li_2S_6 composites.

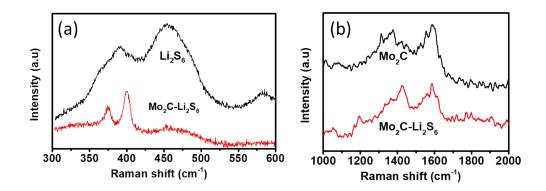
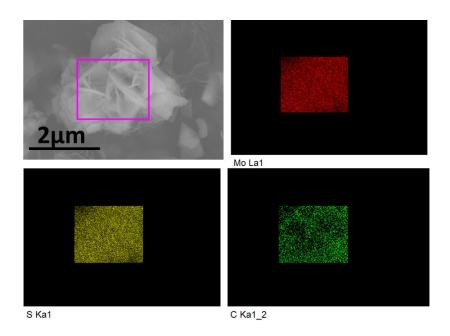



Fig. S5 Raman spectra of representative (a) Li_2S_6 and Mo_2C / Li_2S_6 , (b) Mo_2C and $\text{Mo}_2\text{C}/\text{Li}_2\text{S}_6$ to highlight the interaction.

 $\label{eq:Fig.S6} \textbf{Fig. S6} \ \text{SEM image and corresponding EDX elemental mappings of Mo, S and C} \\ elements in the $S@Mo_2C$ composite.$

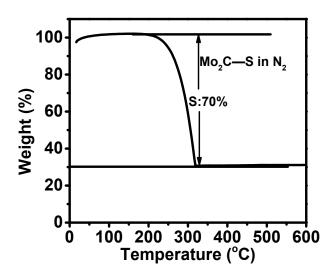
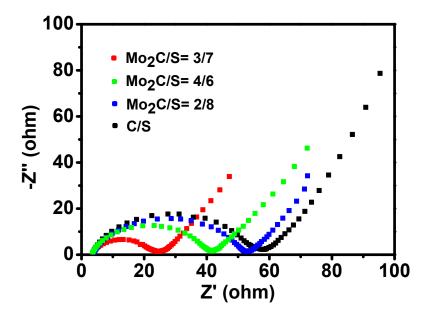



Fig. S7 TGA curves of S@Mo $_2$ C in N $_2$ atmosphere with a heating rate of 10 $^{\circ}$ C min $^{-1}.$

Fig. S8 Electrochemical impedance spectroscopy of 2Mo2C/8S, 3Mo2C/7S, 4Mo2C/6S and C/S electrode.

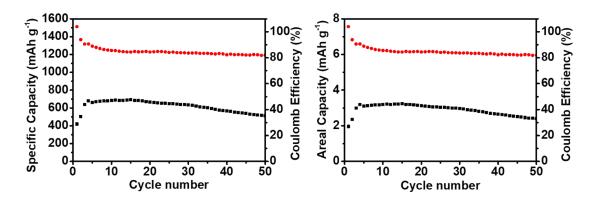


Fig. S9 (a) Specific capacity and (b) Areal capacity of Mo_2C at 0.1 C with a high sulfur loadings of 4.68 mg cm⁻².

Table S1. Electrical conductivity of different sulfur host materials.

Materials	TiO ₂	Nb ₂ O ₅	XC-72	TiN	This work
			carbon		
Conductivity	10-10	10-6	1.5	46	30
(× S cm ⁻¹)					