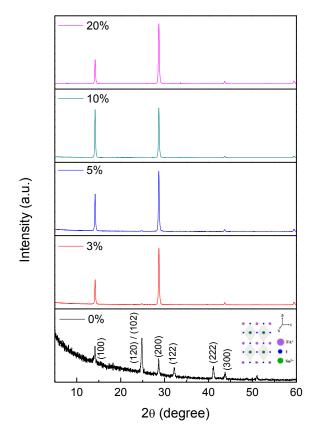
Electronic Supplementary Information (ESI)

Boosting the Performance and Stability of Quasi-Two-Dimensional Tin-Based Perovskite Solar Cells Using a Formamidinium Thiocyanate Additive

Hongki Kim,^{ab} Yoon Ho Lee,^{ab} Taecheon Lyu,^c Jong Heun Yoo,^{ab} Taiho Park^b and Joon Hak Oh*^a

^aSchool of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National

University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.


E-mail: joonhoh@snu.ac.kr

^bDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.

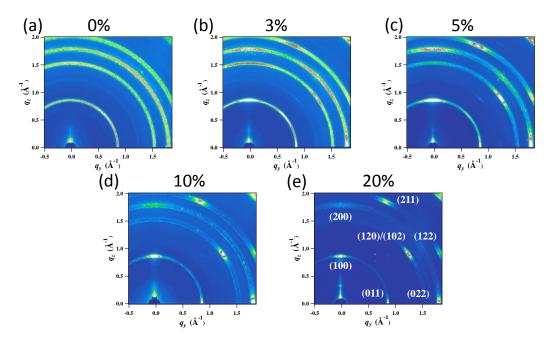
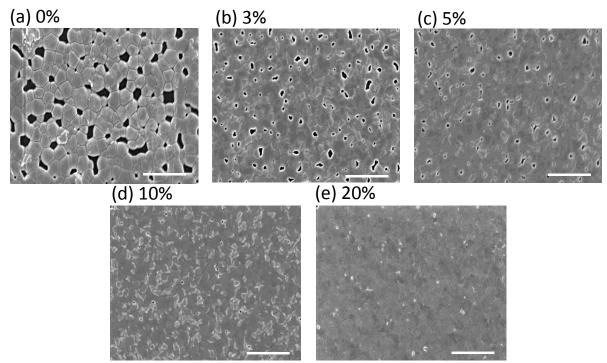
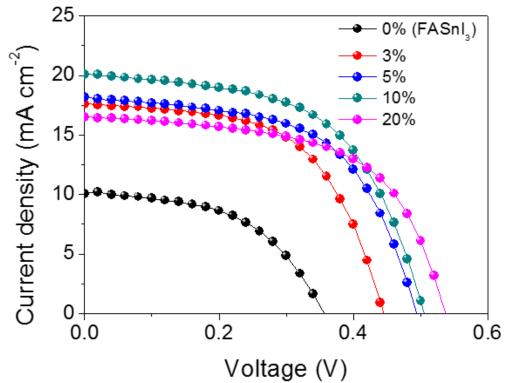
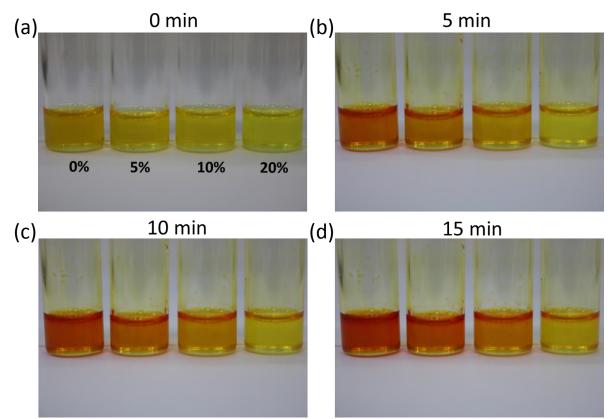
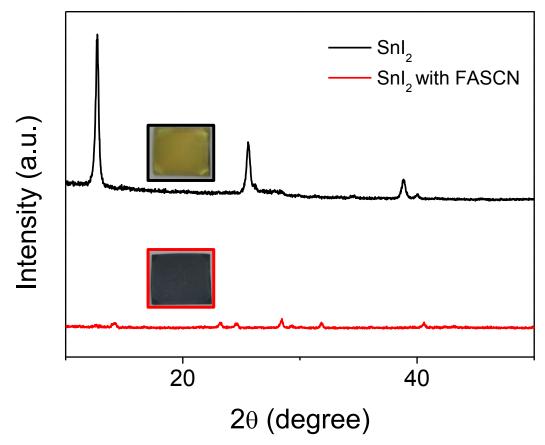

^cDepartment of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.

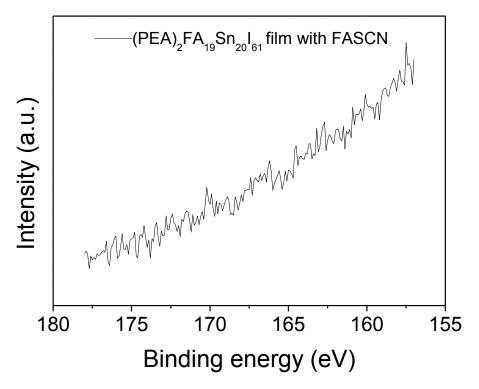
Table of Contents

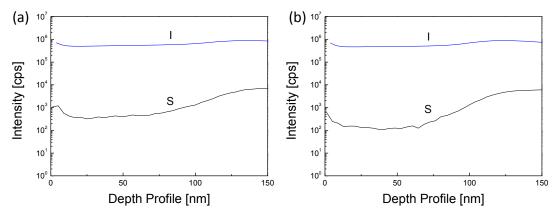

Content	Page
(Fig. S1–S2) XRD and GIWAXS analyses of quasi-2D tin-based perovskite films with different molar ratios of PEAI to FAI.	S3
(Fig. S3) SEM images of quasi-2D tin-based perovskite films with different molar ratios of PEAI to FAI.	S4
(Fig. S4) <i>J</i> – <i>V</i> curves and of 3D FASnI ₃ and quasi-2D tin-based perovskite solar cells with different molar ratios of PEAI to FAI.	S5
(Fig. S5) Photographs of SnI_2 solutions in a DMF:DMSO (8:2 volume ratio) with different concentrations of FASCN additive .	S6
(Fig. S6) XRD diffractograms of Snl ₂ films with or without the FASCN additive.	S7
(Fig. S7) XPS spectrum of S (2p) in the 10% PEAI film with FASCN additive.	S8
(Fig. S8) XPS spectrum of S (2p) in the 10% PEAI film with FASCN additive.	S9
(Fig. S9) Statistics of photovoltaic parameters for the optimized 20 devices with different amounts of FASCN additive.	S10
(Fig. S10) Steady-state photocurrents and PCEs of the best-performing devices without or with FASCN additive.	S11
(Fig. S11) <i>J–V</i> curves of the optimized devises in forward and reverse scans.	S12
(Fig. S12) <i>J–V</i> curves the best-performing devices with different amounts of FASCN additive.	S13
(Fig. S13) Photovoltaic parameters (J_{sc} , V_{oc} , and FF) during stability tests.	S14
(Fig. S14) Stability tests in ambient condition.	S15
(Fig. S15) Stability tests under continuous illumination.	S16
(Fig. S16) <i>C</i> – <i>V</i> measurements of quasi-2D tin-based perovskite devices with different amounts of FASCN.	S17
(Fig. S17) Dark <i>I–V</i> curves of quasi-2D tin-based perovskite devices with or without the FASCN additive.	S18
(Fig. S18) Dark <i>I–V</i> plots of electron-only devices with different amounts of FASCN additive.	S19
(Fig. S19) EIS studies for quasi-2D tin-based perovskite with different amounts of FASCN additive.	S20
(Table S1) Photovoltaic parameters of quasi-2D tin-based perovskite solar cells with different molar ratios of PEAI to FAI.	
(Table S2) Photovoltaic parameters of the best-performing devices with different amounts of FASCN additive.	S21
(Table S3) Summary for comparing the performances of previously reported FASnI ₃ -based perovskite solar cells and our work.	

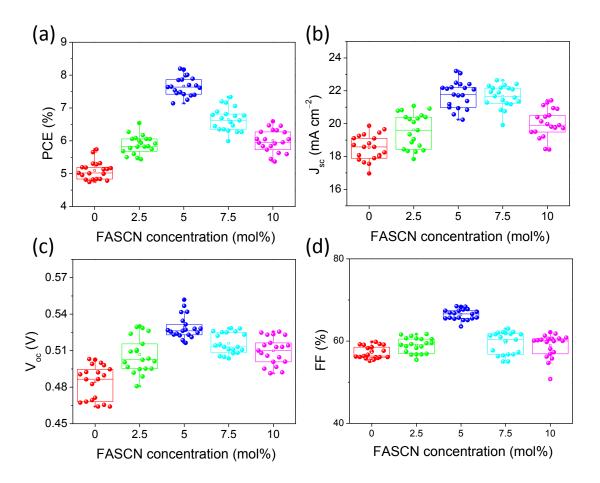

Fig. S1 XRD diffractograms of quasi-2D tin-based perovskite films with different molar ratios of PEAI to FAI: 0% (FASnI₃), 3%, 5%, 10%, and 20%.

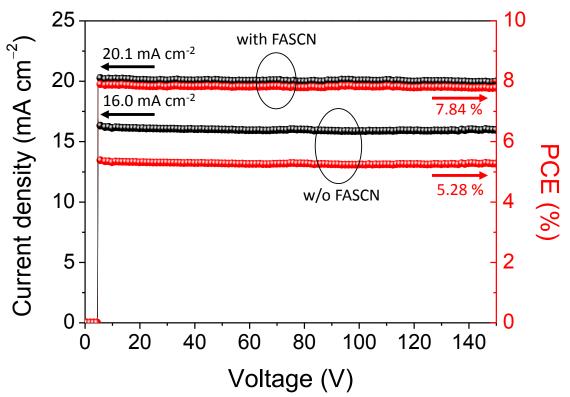

Fig. S2 GIWAXS images of quasi-2D tin-based perovskite films with different molar ratios of PEAI to FAI: (a) 0% (FASnI₃), (b) 3%, (c) 5%, (d) 10%, and (e) 20%.

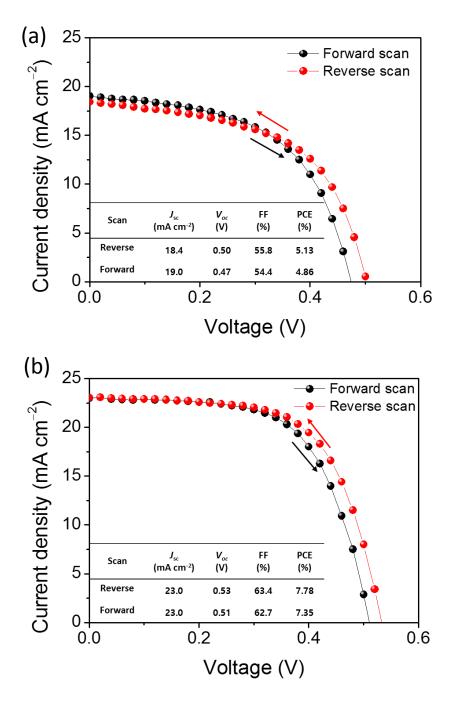

Fig. S3 SEM images of quasi-2D tin-based perovskite films with different molar ratios of PEAI to FAI: 0% (FASnI₃), 3%, 5%, 10%, and 20%. Scale bar in all images indicates 2.5 μ m.

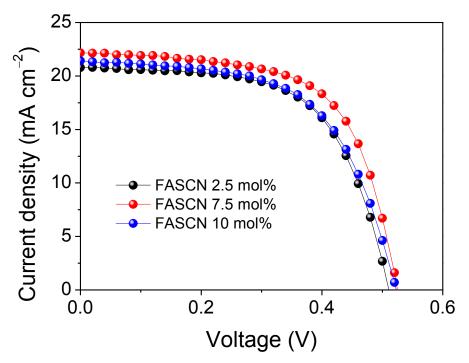

Fig. S4 J-V curves of 3D FASnI₃ and quasi-2D tin-based perovskite solar cells with different molar ratios of PEAI to FAI under AM 1.5 G illumination.

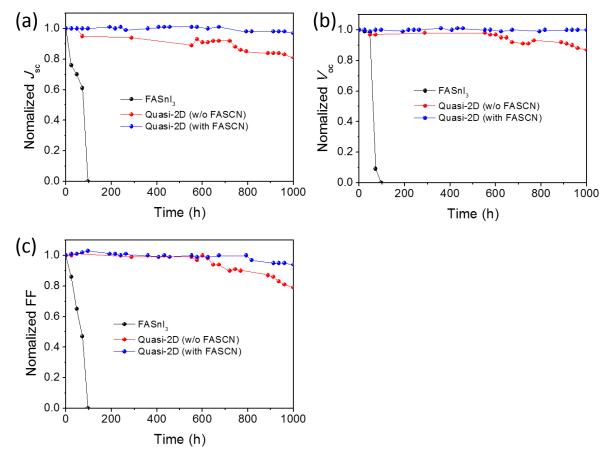

Fig. S5 Photographs of SnI_2 solutions in DMF:DMSO (8:2 volume ratio) with different concentrations of the FASCN additive (0, 5, 10, and 20 mol%) without SnF_2 incorporation as functions of exposure time to air: (a) 0, (b) 5, (c) 10, and (d) 15 min.

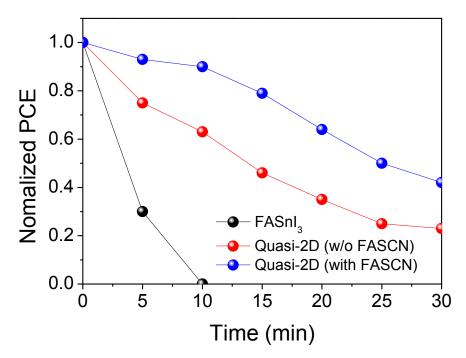

Fig. S6 XRD diffractograms of Snl₂ films with or without FASCN additive. Inset photographs display Snl₂ films coated on Si wafers corresponding to the XRD results. Snl₂ films were fabricated in a nitrogen-filled glove box and exposed to ambient air for 30 minutes for XRD analysis.

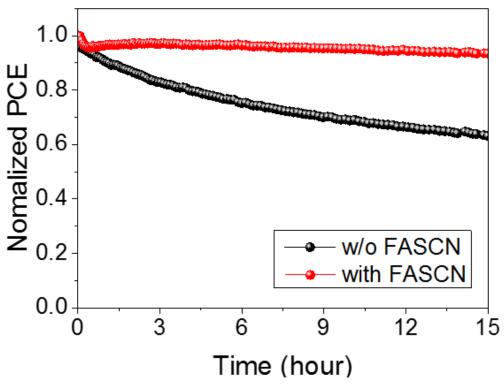

Fig. S7 XPS spectrum showing the absence of S (2p) peak in the final 10% PEAI film with FASCN additive. The S (2p) peak is expected to appear at the binding energy near 165 eV.

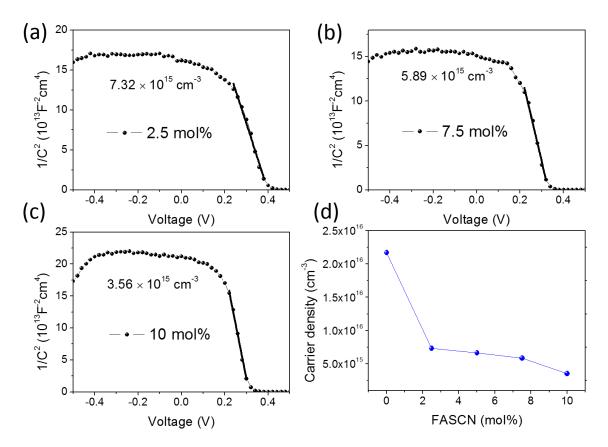

Fig. S8 ToF-SIMS depth profiles for quasi-2D tin-based perovskite films with or without FASCN additive (5 mol%) (a) before annealing and (b) after annealing.

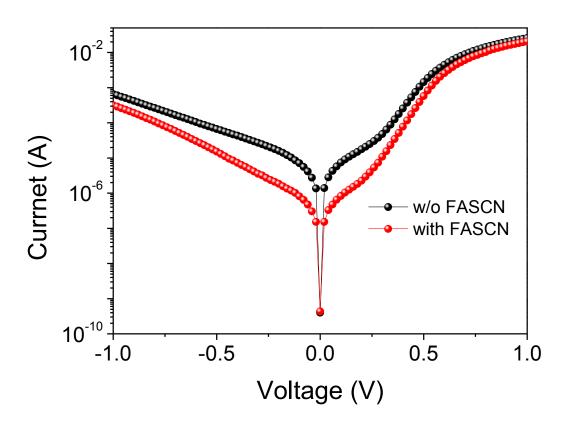

Fig. S9 Statistics of photovoltaic parameters including (a) PCE, (b) J_{sc} , (c) V_{oc} , and (d) FF of the best-performing 20 devices with different amounts of FASCN additive.

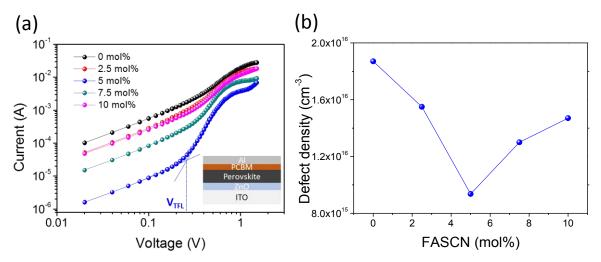

Fig. S10 Steady-state photocurrents and PCEs of the best-performing devices without or with FASCN additive measured under a constant bias of 0.33 V (without FASCN) and 0.39 V (with FASCN) near their MPP.


Fig. S11 *J*–*V* curves of the optimized devices (a) without or (b) with FASCN additive in forward and reverse scans.


Fig. S12 *J*–*V* curves of the best-performing devices with different amounts of FASCN additive.


Fig. S13 Variations in photovoltaic parameters including (a) J_{sc} , (b) V_{oc} , and (c) FF for stability tests over 1000 hours in a nitrogen-filled glove box for FASnI₃ and 10% PEAI devices with or without FASCN additive. Initial photovoltaic parameters: FASnI₃ (J_{sc} : 10.0 mA cm⁻², V_{oc} : 0.35 V, FF: 52.0%, PCE: 1.81%); Quasi-2D (w/o FASCN) (J_{sc} : 18.8 mA cm⁻², V_{oc} : 0.50 V, FF: 57.7%, PCE: 5.40%); Quasi-2D (with FASCN) (J_{sc} : 22.2 mA cm⁻², V_{oc} : 0.53 V, FF: 67.4%, PCE: 7.86%)


Fig. S14 Stability tests for FASnI₃ and 10% PEAI devices with or without FASCN additive in ambient condition with a 40% relative humidity at room temperature. Initial photovoltaic parameters: FASnI₃ (J_{sc} : 9.7 mA cm⁻², V_{oc} : 0.34 V, FF: 51.3%, PCE: 1.68%); Quasi-2D (w/o FASCN) (J_{sc} : 19.5 mA cm⁻², V_{oc} : 0.50 V, FF: 56.7%, PCE: 5.53%); Quasi-2D (with FASCN) (J_{sc} : 21.7 mA cm⁻², V_{oc} : 0.52 V, FF: 67.8%, PCE: 7.70%)


Fig. S15 PCE tracking for 10% PEAI devices with or without FASCN additive under continuous 1 sun illumination at their MPP, which was measured in a nitrogen-filled glove box at 25 °C. (Initial photovoltaic parameters: Quasi-2D (w/o FASCN) (J_{sc} : 17.6 mA cm⁻², V_{oc} : 0.49 V, FF: 57.9%, PCE: 5.01%, V_{mpp} : 0.36 V); Quasi-2D (with FASCN) (J_{sc} : 22.4 mA cm⁻², V_{oc} : 0.53 V, FF: 67.7%, PCE: 7.99%, V_{mpp} : 0.40 V)

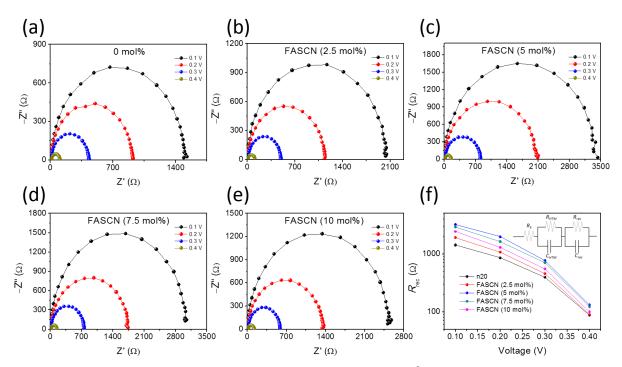

Fig. S16 (a-c) C-V measurement results of the 10% PEAI devices with different amounts of FASCN where the calculated carrier density for each device is noted in the inset, (d) Carrier density profile as a function of FASCN concentration.

Fig. S17 Dark *I–V* curves of the 10% PEAI devices with or without FASCN additive.

Fig. S18 (a) Dark *I–V* plots of electron-only devices with different amounts of FASCN additive where the configuration of electron-only device is shown in the inset, (b) Calculated trap densities as a function of amounts of FASCN additive.

Fig. S19 EIS studies under AM 1.5 G illumination at 100 mW cm⁻² at different forward voltages. (a-e) The resulting Nyquist plots with different amounts of FASCN additive and (f) their corresponding R_{rec} as a function of applied forward voltage where the equivalent circuit used for fitting is shown in inset. (R_s is the series resistance, R_{HTM} is the hole transporting material (HTM) resistance, R_{rec} is the recombination resistance, C_{HTM} is the HTM capacitance, and C_{rec} is the recombination capacitance, respectively.)

SnF ₂ Concentration [mol%]	Molar ratio of PEAI to FAI [%]	J _{sc} [mA cm ⁻²]	V _{oc} [V]	FF [%]	PCE [%]
10	0	10.1	0.36	51.2	1.84
	3	17.6	0.45	57.3	4.53
	5	18.1	0.49	57.4	5.15
	10	19.9	0.50	57.5	5.74
	20	16.5	0.53	58.0	5.07

Table S1. Photovoltaic parameters of 3D FASnI₃ and quasi-2D tin-based perovskite solar cells

Table S2. Photovoltaic parameters of the best-performing devices with different amounts of FASCN additive

FASCN Concentration [mol%]	J _{sc} [mA cm ⁻²]	V _{oc} [V]	FF [%]	PCE [%]
2.5	20.8	0.51	61.7	6.54
7.5	22.2	0.53	63	7.33
10	21.4	0.52	58.9	6.59

Table S3. Summary for comparing the performances of recently reported FASnI₃-based perovskite solar cells and our work

Absorber	Device	Coating	J _{sc}	Voc	FF	PCE	Glove box	Ref.
	structure	method	[mA cm ⁻²]	[V]	[%]	[%]	level [ppm]	
FASnI ₃ + pyrazine	Conventional	One-step	23.7	0.32	63	4.8 (2.8) ^a	N/A	(34)
FA _{1-x} MA _x SnI ₃	Inverted	One-step	21.2	0.61	62.7	8.12 (6.6)	$O_2 < 1.0$ $H_2O < 0.02$	(22)
(PEA) ₂ FA _{n-1} Sn _n I _{3n+1} (20% PEAI)	Inverted	One-step	14.44	0.59	69	5.94 (1.21)	$O_2 < 3$ $H_2O < 1$	(30)
(PEA) ₂ FA _{n-1} Sn _n I _{3n+1} (8% PEAI)	Inverted	One-step	24.1	0.525	71	9 (6)	N/A	(31)
{en}FASnI₃	Conventional	One-step	22.54	0.48	65.96	7.14 (2.34)	N/A	(27)
FASnI _{1-x} Br _x	Conventional	One-step	19.8	0.414	66.9	5.5 (3.46)	N/A	(23)
FASnI ₃ + SnF ₂ + TMA	Inverted	Two-step	22.45	0.47	67.8	7.09 (4.2)	N/A	(24)
FASnI ₃ + SnF ₂ + TMA	Conventional	Two-step	21.65	0.31	64.7	4.34 (2.26)	N/A	(24)
(PEA) ₂ FA _{n-1} Sn _n I _{3n+1} (10% PEAI)	Inverted	One-step	22.5	0.53	68.3	8.17 (1.84)	O₂ < 5 H₂O < 2.2	Our work

^{*a*}The efficiency of the reference FASnI₃ device presented in the corresponding paper.