Electronic Supplementary Information

Narrow Bandgap Semiconductor Decorated Wood Membrane for High-Efficiency Solar-Assisted Water Purification

Hanwen Liu^{1,†}, Chaoji Chen^{2,†}, Huang Wen¹, Ruixue Guo¹, Nick A. Williams², Baodui Wang¹, Fengjuan Chen^{1,*}, Liangbing Hu^{2,*}

 Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000 (P.R. China).
 Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742.

*Email: <u>binghu@umd.edu; chenfj@lzu.edu.cn</u>

[†]These authors contributed equally to this work.

Figure S1. Energy dispersive X-ray spectroscopic (EDX) analysis of CuFeSe₂ NPs. The

result shows that the presence of the three elements in the $CuFeSe_2$ NPs.

Element	percentage	
Cu	1	
Fe	0.95	
Se	1.98	

Table S1 Composition of NPs calculated from Inductively Coupled Plasma Atomic Emission

 Spectrometry (ICP-AES).

Figure S2. (a) Survey XPS scan for CuFeSe₂ NPs. (b) Cu $2p_{3/2}$ and $2p_{1/2}$ peaks are observed at 932.0 and 952.3 eV. (c) Fe $2p_{3/2}$ and $2p_{1/2}$ peaks are observed at 710.9 and 723.8 eV. (d) Se 3d peak is observed at 55.0 eV.

Figure S3. XRD pattern of synthesized CuFeSe₂ NPs and the standard data of tetragonal phase CuFeSe₂ in eskebornite form (JCPDS No. 81-1959)

Figure S4. CuFeSe₂ NP-decorated wood membrane is highly hydrophilic.

Figure S5. The thermal conductivity of CuFeSe₂ NP-decorated wood membrane under dry and wet states.

Figure S6. The size distribution of CuFeSe₂ NPs.

Figure S7. A piece of basswood was cut with the dimension of $5.0 \times 5.0 \times 0.5$ cm³, which was soaked in the chloroform solution of CuFeSe₂ NPs by vacuum assistance. The color of the wood changes from yellow to black.

Figure S8. FT-IR spectra of CuFeSe₂ NPs, natural wood, and black wood membrane. The stretching band of CuFeSe₂ NPs at 613 cm⁻¹ moved to 592 cm⁻¹ which demonstrate the Fe-O formation between CuFeSe₂ and the hydroxyl groups of cellulose in wood.

Figure S9. The surface temperature increasing process of the natural black wood membrane under solar illumination of 2 kW·m⁻².

Figure S10. The surface temperature increasing process of natural and black wood membrane under solar illumination of 3 kW·m⁻².

Figure S11. Mass change through water evaporation for black wood membrane and bare water only under different solar illuminations.

Figure S12. The enhancement factor (E.F.) of the black wood membrane. As the light intensity increases, the black wood membrane exhibits enhanced solar steam generation. E.F. refers to the evaporation rate ratio of bare water under different illumination intensities.

Energy balance analysis:

According to previous report of J. Zhu's group ^[1], the main energy consumption under input heat flux of 1 kW·m⁻² could be caused by the approach as follows:

(1) Water evaporation consumption (**ŋ**):

The water evaporation consumption is 66.7%, which is equal to the evaporation efficiency.

(2) Refection loss (η_{ref}):

The solar absorption of black wood membrane is up to 99%. Thus, η_{ref} is about 1%.

(3) Conduction loss (**n**_{cond}):

The energy consumption caused by the conductive heat flux from wood to water. On the basis of Prof. Zhu's calculation method, the η_{cond} of black wood membrane is 25.6%, which is a major part of the energy loss.

(4) Radiation loss (**ŋ**_{rad}):

The Radiation loss is caused by the radiation heat from the black wood membrane to the environment. The η_{rad} is 4.87%, which is calculated refer to previous report.

(5) Convection loss (η_{conv}):

The heat is transferred from the black wood membrane to the environment. The η_{conv} is 1.2%, which is calculated by Newton's law of cooling^[2].

In summary, the total energy consumption of the five main parts is about 99.4% (66.7% + 1%

 $+25.6\% + 4.87\% + 1.2\% \approx 99.4\%$), which is almost all input energy.

Element	Concentration (mg/L)	WHO standards (mg/L)
Cu	0.02	2.0
Fe	0.02	null
Se	0.005	0.01

Table S2: Comparison of the concentration of Cu, Fe, Se elements in the desalinated water and the World Health Organization (WHO) standards.

Supplementary Reference

- 1 N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu and J. Zhu, *Adv. Mater.*, 2017, **29**, 1606762.
- 2 H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, *Nat. Commun.* 2014, **5**, 4449.