ELECTRONIC SUPPLEMENTARY INFORMATION

High-performance Na ion cathodes based on ubiquitous and reversible O redox reaction

M. Hussein N. Assadi,^{a,b,*} Marco Fronzi,^{c,d} Mike Ford^c and Yasuteru Shigeta^a

^aCenter for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan.

^bCenter for Green Research on Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

^cInternational Research Centre for Renewable Energy, State Key Laboratory of Multi- phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

^dSchool of Mathematical and Physical Science, University of Technology Sydney, Ultimo 2007, New South Wales 2007, Australia.

*Email: h.assadi.2008@ieee.org

1. Additional Computational Settings

The pseudopotentials used in calculations contained the following electrons: $2s^22p^4$ for O; $2p^63s^1$ for Na, $4p^64d^45s^1$ for Nb, $4p^64d^55s^1$ for Mo; $4p^64d^{10}$ for Pd; and $4d^{10}5s^1$ for Ag. The specific capacity ($Q_{Theoretical}$) in mAh/g was calculated according to the following formula:

$$Q_{Theoretical} = \frac{hF}{3600M_{Molecular}}$$
Equation S1.

Here, *n* is the extracted charge, \mathcal{F} is the Faraday constant (96485.3329 sA/mol), and $M_{Molecular}$ is the molecular weight in g/mole. The energy density was calculated by multiplying the specific capacity in the cell voltage.

2. Structural Details

The Na₁NbO₂ and Na₃AgO₂ compounds have been previously synthesised and characterised [1,2]. Tables S1 and S2 present the calculated and experimental lattice parameters for these two compounds. The calculated and measured lattice parameters differ only by ~1% indicating excellent convergence of the DFT calculation within the GGA+U framework.

r	p		
	Na ₁ NbO ₂	Calculated	Experimental
	Lattice Group	$194 (P6_3/mmc)$	$194 (^{P6_3/mmc})$
	a (Å)	3.013	2.955
	b (Å)	3.013	2.955
	<i>c</i> (Å)	11.708	11.647
	α (°)	90.000	90
	β (°)	90.000	90
	<u>γ(°)</u>	120.000	120

Table S1. The calculated and experimental lattice parameters of Na₁NbO₂.

Table S2. The calculated and experimental lattice parameters of Na₃AgO₂.

1	502	
Na ₃ AgO ₂	Calculated	Experimental
Lattice Group	72 (Ibam)	72 (Ibam)
a (Å)	5.525	5.463
b (Å)	11.031	10.926
c (Å)	6.002	5.926
α (°)	90.000	90
β (°)	90.000	90
γ (°)	90.000	90

Monoclinic Na₂MoO₄ has been synthesised [3]. Its structure, however, has not been fully characterised yet. We, nonetheless, present a comparison between the calculated Na₂MoO₄ lattice parameters and the lattice parameter of the isostructural monoclinic K₂MoO₄ [4] in Table S3. The lattice constants of Na₂MoO₄ are ~5% smaller than those of K₂MoO₄. This shrinkage can be attributed to the smaller ionic radius of Na⁺ compared to that of K⁺.

Table S3. Comparison between the calculated lattice parameters of Na2MoO4 with the experimental lattice parameters of K2MoO4.

Na_2MoO_4	Calculated	Experimental	
	Na_2MoO_4	K ₂ MoO ₄	
Lattice Group	12(C2/m)	12(C2/m)	
a (Å)	11.692	12.348	
b (Å)	5.945	6.081	
<i>c</i> (Å)	6.942	7.538	
α (°)	90.000	90	
β (°)	117.647	115.74	
<u>γ(°)</u>	90.000	90	

 $Na_4Zr_5O_{12}$ and $Na_1Pd_2O_3$ have not yet been synthesis. We modelled these compounds after the synthesised and well-characterised $K_4Zr_5O_{12}$ and KPd_2O_3 [5-7]. Tables S4 and S5 present a comparison between the Na based and K based compounds. The c value is 2.01% shorter in $Na_4Zr_5O_{12}$ than in $K_4Zr_5O_{12}$. The difference is more profound in the palladate compounds as the *c* is 11.12% smaller in sodium palladate than in potassium palladate.

Table S4. Comparison between the calculated lattice parameters of Na₄Zr₅O₁₂ with the experimental lattice parameters of K₄Zr₅O₁₂.

	$Na_4Zr_5O_{12}$	$K_4Zr_5O_{12}$
	(Calculated)	Experimental
Lattice Group	164 (^P 3m1)	164 (P3m1)
a (Å)	5.855	5.821
b (Å)	5.855	5.821
<i>c</i> (Å)	10.652	10.437
α (°)	90.000	90
β (°)	90.000	90
γ (°)	120.000	120

Table S5. Comparison between the calculated lattice parameters of Na1Pd2O3 with the experimental lattice parameters of K1Pd2O3.

	$Na_1Pd_2O_3$	$K_1Pd_2O_3$
	(Calculated)	(Experimental)
Lattice Group	160 (R3mR3m ₎	160 (<i>R</i> 3 <i>m</i>)
a (Å)	6.130	6.073
b (Å)	6.130	6.073
<i>c</i> (Å)	16.897	18.777
α (°)	90.000	90
β (°)	90.000	90
_γ (°)	120.000	120

Since $Na_4Zr_5O_{12}$ and $Na_1Pd_2O_3$ have not been synthesised yet, we examined their stability against the binary oxides they may decompose to. The results are presented in Table S6. Negative formation enthalpy (ΔH) indicates the stability of the ternary compounds. According to Table S6, both $Na_4Zr_5O_{12}$ and $Na_1Pd_2O_3$ were found energetically stable against decomposing into the competing binary oxides.

compound	∆H(eV/u.f.)	Competing oxide phases
Na ₄ Zr ₅ O ₁₂	-8.241	5ZrO ₂ +2Na ₂ O
$Na_1Pd_2O_3$	-4.177	2PdO+1/2Na2O+1/4O2

Table S6. The formation enthalpy (Δ H) of the ternary oxides with respect to the binary oxides.

3. Choice of Functional

The conventional and popular general gradient approximation (GGA) is known to delocalise overly the *d* states and underestimate bang gaps of the transition metal (TM) oxides [8]. Since the localisation effects are stronger for 3d electrons, these problems manifest most adversely in 3d TM oxides. However, in the 4d TM oxides we studied here, localisation effects are rather smaller, and the shortcoming of the GGA method can be mitigated by introducing a modest Hubbard term on the 4*d* electrons. In our work, we choose a U_{eff} value of 2 eV for all TM ions. The choice of a single value U_{eff} allowed us a straightforward comparison of the materials properties. This approach has been successfully applied to survey studies for Na₂TMO₃ [9], NaTMO₂ [10] and ZnO:TM [11] systems. In Figure S1, we present the DOS of the sodiated and desodiated compounds calculated under the GGA functional. For most of the compounds, the GGA DOS is approximately similar to the one calculated with GGA+U functional (Figure 3) indicating lack of strong localisation effects in the studied compounds. The only Noticeable difference occurs in Na_{0.5}Pd₂O₃ for which the position of the Fermi level is wrongly placed in the middle of the valence band in GGA calculations. Table S7, presents the half-cell voltages calculated with GGA functional and the GGA+U ($U_{eff} = 2$ eV). Evidently, GGA+U method introduces the necessary moderate correction with respect to the mere GGA method.

Figure S1. The total and partial density of states of the sodiated (left column) and desodiated compounds (right column) calculated with GGA method. Blue, purple and orange lines represent total, TM 4d and O 2p partial states respectively.

Table 57. Voltages calculated with GGA+U and GGA function	. Voltages calculated with GGA+U and C	GGA functiona
---	--	---------------

	$Na_{4-x}Zr_5O_{12}$	$Na_{1-x}NbO_2$	Na _{2-x} MoO ₄	$Na_{1-x}Pd_2O_3$	Na _{3-x} AgO ₂ .
Potential (V) GGA+U	3.583	2.476	4.743	2.630	2.398
Potential (V) GGA	3.790	2.247	4.369	2.666	2.314

To examine the how the DOS is influenced if we chose a higher U_{eff} value or higher level functional, we calculated the DOS of the Na₂MoO₄ compound with U_{eff} = 3.7 eV and the hybrid HSE06 functional [12,13] with a mixing parameter α = 0.2, presented in Figure S1(b) and (c) respectively. U_{eff} value of 3.7 eV was used for Na₂MoO₄ in Materials Project (materialsproject.org). Furthermore, Mo oxides are known to exhibit particularly strong localisation effect [14]. As we can see in Figure 2S, the dominance of O 2p states near the valence band maximum is a preserved feature for all functional used. Furthermore, the calculated bandgap (E_g) does not strongly depend on the functional chosen indicating that U_{eff} value we used in the calculation was adequate for these 4d TM oxides. Consequently, U_{eff} = 2 eV for calculating the voltages is adequately robust and efficient.

Figure S2. The total and partial density of states of the Na_2MoO_4 compound calculated with various functionals. Blue, purple and orange lines represent total, O 2p and TM 4d partial states respectively.

4. Desodiation Process in Na_{4-x}Zr₅O₁₂ and Na_{3-x}AgO₂

Calculating the equilibrium voltage using Equation 1 requires the free energy of the thermodynamically stable structures of the sodiated and desodiated compounds. Since the entropic contribution is small and hence neglected in our calculations, we used the total DFT energy in place of the free energy. When there are different possibilities for Na vacancy formation or their arrangements, care should be taken to ensure that the most stable configuration is considered for calculating the voltage. Accordingly, we calculated the voltages based on the most stable V_{Na} configuration in $Na_{4-x}Zr_5O_{12}$ and $Na_{3-x}AgO_2$ compounds in which there are two distinct $V_{Na}s$. Comparing the formation energy of $V_{Na}s$, however, identifies the most stable configuration at the early stages of the desodiation. To confirm that sodium vacancies from 2d Wyckoff site in $Na_{4-x}Zr_5O_{12}$ and 4b Wyckoff in $Na_{3-x}AgO_2$ are still the most stable in fully desodiated compounds, we calculated the total energy of hypothetical fully desodiated $Na_2Zr_5O_{12}$ and Na_2AgO_2 compounds in which Na ions from alternative 2c and 8g sites were extracted respectively. We found that the total energy of $Na_2Zr_5O_{12}$ rose by 0.40 eV per unit formula and the total energy of Na_2AgO_2 rose by 1.44 eV per unit formula when alternative Na sites were completely vacated instead of those forming most stable vacancies.

References

- 1 Hans-Friedrich, R., Gerd, M., Zhiwei, H. & Günter, K. Synthesis, structure, and X-ray absorption spectra of Li_xNbO_2 and Na_xNbO_2 (x \leq 1). Z. Anorg. Allg. Chem. 619, 1369–1373, doi:doi:10.1002/zaac.19936190808 (1993).
- 2 Klassen, H. & Hoppe, R. Alkalioxoargentate(I). Über Na₃AgO₂. Z. Anorg. Allg. Chem. 485, 92–100, doi:doi:10.1002/zaac.19824850109 (1982).
- Busey, R. H. & Keller, O. L. Structure of the Aqueous Pertechnetate Ion by Raman and Infrared Spectroscopy. Raman and Infrared Spectra of Crystalline KTcO₄, KReO₄, Na₂MoO₄, Na₂WO₄, Na₂MoO₄·2H₂O, and Na₂WO₄·2H₂O. J. Chem. Phys. 41, 215–225, doi:10.1063/1.1725625 (1964).

- 4 Gatehouse, B. M. & Leverett, P. Crystal structure of potassium molybdate, K₂MoO₄. J. Chem. Soc. A, 849–854, doi:10.1039/J19690000849 (1969).
- 5 Gatehouse, B. M. & Nesbit, M. C. The crystal structure of the 2:5 phase in the K₂O-ZrO₂ system: K₄Zr₅O₁₂, a compound with octahedral and trigonal prismatic zirconium(IV) coordination. *J. Solid State Chem.* **31**, 53–58, doi:<u>https://doi.org/10.1016/0022-4596(80)90007-9</u> (1980).
- 6 Wang, Q. *et al.* Preparation and catalytic activity of K₄Zr₅O₁₂ for the oxidation of soot from vehicle engine emissions. *J. Ind. Eng. Chem.* **16**, 68–73, doi:10.1016/j.jiec.2010.01.019 (2010).
- 7 Panin, R. V. et al. Ordering of Pd²⁺ and Pd⁴⁺ in the mixed-valent palladate KPd₂O₃. Inorg. Chem. 49, 1295–1297, doi:10.1021/ic902187a (2010).
- 8 Pribram-Jones, A., Gross, D. A. & Burke, K. DFT: A Theory Full of Holes? *Annu. Rev. Phys. Chem.* **66**, 283–304, doi:10.1146/annurev-physchem-040214-121420 (2015).
- 9 Assadi, M. H. N., Okubo, M., Yamada, A. & Tateyama, Y. Oxygen redox in hexagonal layered Na_xTMO₃ (TM = 4d elements) for high capacity Na ion batteries. *J. Mater. Chem. A* 6, 3747–3753, doi:10.1039/C7TA10826E (2018).
- 10 Assadi, M. H. N. & Shigeta, Y. Dominant role of orbital splitting in determining cathode potential in O3 NaTMO₂ compounds. J. Power Sources 388, 1–4, doi:<u>https://doi.org/10.1016/j.jpowsour.2018.03.056</u> (2018).
- 11 Gopal, P. & Spaldin, N. A. Magnetic interactions in transition-metal-doped ZnO: An ab initio study. *Phys. Rev. B* 74, 094418, doi:10.1103/PhysRevB.74.094418 (2006).
- 12 Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. *J. Chem. Phys.* **118**, 8207–8215, doi:10.1063/1.1564060 (2003).
- Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906, doi:10.1063/1.2204597 (2006).
- 14 Lutfalla, S., Shapovalov, V. & Bell, A. T. Calibration of the DFT/GGA+U Method for Determination of Reduction Energies for Transition and Rare Earth Metal Oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 7, 2218-2223, doi:10.1021/ct200202g (2011).