Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary Figures

Figure S1. A high-magnification SEM image of a fractured nitrogen doped carbon precursors.

Figure S2. Morphology and elemental distribution of the MAC-N_{0.5} electrode: (a) a low-magnification SEM image of the MAC-N_{0.5}; (b) a high-magnification SEM image showing a spherical morphology of the MAC-N_{0.5}; (c) a SEM image of the MAC-N_{0.5} and the corresponding EDS elemental mappings of (d) carbon (red), (e) nitrogen (green), and (f) oxygen (yellow).

Figure S3. Structural characterization of the CP-N and MAC-N_x (x=0.1, 0.5, 0.6,

0.7, 1.0): (a) XRD patterns and (b) Raman spectra.

Figure S4. Small-angle x-ray scattering (SAXS) patterns of the nitrogen doped carbon precursors

Figure S5. Chemical analysis of the CP-N and MAC-N_x (x=0.1,0.5,0.6,0.7,1.0): (a)

XPS survey spectra; and (b) High-resolution XPS spectra of N 1s, respectively.

Figure S6. Galvanostatic charge/discharge curves of the MAC- $N_{0.5}$ sample in a 6 M KOH solution with different current densities using two electrodes;

Supplementary Tables

 Table S1:
 The carbon yield of the nitrogen doped carbon precursors and MAC-N-x

(x = 0.1, 0.5, 0.6, 0.7, 1.0)

Samlpe	Yield
CP-N	28.1%
MAC-N-0.1	25.8%
MAC-N-0.5	24.7%
MAC-N-0.6	23%
MAC-N-0.7	21.9%
MAC-N-1	19.1%

Sample	pyridinic N	pyrrolic N	graphitic N 15%	
CP-N	39%	46%		
MAC-N _{0.1}	33%	50%	17%	
MAC-N _{0.5}	31%	50%	19%	
MAC-N _{0.6}	34%	45%	21%	
MAC-N _{0.7}	38%	39%	23%	
MAC-N10	44.5%	27%	28.5%	

 Table S2:
 N content of carbons obtained from XPS

Item	density	mass	BET	electrolyt	C_g/Fg^{-1}	C _{vol} /	rate	Ca	Ref
	g cm ⁻³	density/	m ⁻² g	e/mol	$(I/A g^{-1})$	F cm ⁻³	capability	F	
		mg cm ⁻²					(A g ⁻¹)	cm ⁻²	
Densely	0.96	3	1103	KOH (6	374 (0.	360	75 %	1.12	1
PGC				mol)	5)		0.5 to 20		
CMG	0.5	2	705	КОН	135	67.5	40 %	0.96	2
				5.5mol	(1.33)		0.1 to 2.5		
High porous	1.58	No	367	KOH (6	238	376	69 %	No	3
grapheme		data		mol)	(0.1)		0.1 to 15	data	
macroform									
Commercial	0.5~0.	1-3	2000	KOH (6	160~20	80~11	No data	No	4
activated	7			mol)	0	0		data	
carbon									
vertically	1.18	3.5	123	KOH (6	145	171	72 %	1.83	5
aligned				mol)	(0.5)		0.5 to 20		
reduced GO									
N/F doped	1.93	2.1	1.4	KOH (6	189	365	64 %	2.43	6
СМ				mol)	(0.1)		0.1 to 5		
N-doped	0.44	No	2927	KOH (6	481	212	65.1 %	No	7
SGC		data		mol)	(0.5)		0.5 to 20	data	
3D porous	0.37	3	2870	KOH (6	318	118	59.4%	No	8
carbon				mol)	(0.5)		0.5 to 20	data	
NS-rGO	0.21	3	1435	KOH (6	237	51.4	72.3 %	0.71	9
				mol)	(1)		1 to 30		
FGN-300	1.03	2.9	285	KOH (6	456	470	44 %	1.41	10
				mol)	(0.5)		0.5 to 20		
OMFLC-N	0.65	0.5	1580	H ₂ SO ₄ (855	560	71.9 %	No	11
				0.5mol)	(1)		1 to 40	data	
Holey	0.71	1	1560	KOH (6	310	221	65 %	2.62	12
graphene				mol)	(1)		1 to 100		
MAC-N-0.5	1.49	1.7	327	KOH (6	385	573	86.3 %	3.42	This
				mol)	(0.2)		0.2 to 20		work

Table S3: Performance of selected porous carbon materials for ECs

Supplementary reference

- [1] L. Chen, L. Jiang, L. Zhi and Z. Fan. Nano Energy, 2015, 12, 141–1512.
- [2] J. Luo, H. D. Jang and J. Huang. ACS Nano, 2013, 7, 1464-1471.
- [3] Y. Tao, X. Xie, W. Lv, D.-M. Tang, D. Kong, Z. Huang, H. Nishihara, T. Ishii, B.
- Li, D. Golberg, F. Kang, T. Kyotani and Q.-H. Yang. Sci. Rep., 2013, 3, 2975.
- [4] P. Simon and Y. Gogotsi. ACC Che Res., 2013, 46, 1094-1103.
- [5] Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo, S. Kim, Y. Shin, Y. Park, D. Kim, J.-
- Y.Choi and H. Lee, ACS Nano, 2014, 8, 4580-4590.
- [6] J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T. A. Strobel, L. Tao and F. Gao, *Nat. Commun.*, 2015, 6, 8503.
- [7] J. Yan, Q. Wang, C. Lin, T. Wei and Z. Fan, Adv. Energy Mater., 2014, 4, 1400500.
- [8] L. Qie, W. Chen, H. Xu, X.-Q. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, *Energy Environ. Sci.*, 2013, 6, 2497-2504.
- [9] Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S. M. Lee and H. Lee, Adv. Mater., 2013, 25, 4437-4444
- [10] J. Yan, Q. Wang, T. Wei, L. Jiang, M. Zhang, X. Jing and Z. Fan, ACS Nano, 2014, 8, 720-4729.
- [11] T. Lin, I-W. Chen, F. Liu, C. Y, H. Bi, F. Xu and F. Huang, *Science*, 2015, 350, 1508-1513.
- [12] Y. X. Xu, Z. Y. Lin, X. Zhong, X. Q. Huang, N. O. Weiss, Y. Huang and X. F.Duan, *Nat. Commun.*, 2014, 5, 4554.