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Fabrication of nanoporous VOx/PGP and MnOx/PGP electrodes

The PGP electrode as a cleaned film (area ~6 cm2) was pretreated by cleaning in ethanol 

(2 min), soaking in 0.3M HCl (10 min), rinsing with deionized water, and then drying in a 

fume cupboard at 27 °C. Metal-nucleation layers were produced on PGP substrates by a Pt 

sputtered coating of thickness ~100 nm. The Pt/PGP substrates were highly conducting 

(>1000 S/cm). A nanoporous VOx layer was loaded onto the Pt/PGP substrate by 

electrochemical anodic deposition at 1.2 V in a mixture (volume ratio 1:1) of deionized water 
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and ethanol containing 0.2 M VOSO4 and 0.1 M Na(CH3COO) to assemble the nanoporous 

VOx/PGP electrodes with a saturated calomel electrode (SCE) and a Pt counter electrode. The 

Ni-nanotube layer was prepared on a PGP substrate with electrodeposition at 27°C with a 

SCE and a Pt counter electrode. Firstly, Cu-Ni layers were electrodeposited from a plating 

solution (0.5 M NiSO4, 0.5 M NiCl2, 0.01 M CuSO4, and1 M H3BO3). The deposition process 

was performed at 27°C in a three-electrode cell with a Pt counter electrode and a SCE. PGP 

electrode with area of ~6 cm2 was assembled as the working electrode. Through the potential 

scan from the open circuit potential (~0 V) in a negative direction, the onset of the Cu 

reduction current at approximately –0.1 V was followed by a reduction peak associated with 

the nucleation and growth of Cu metal film. As Cu2+ has a limited mass transfer because of 

its small concentration, the deposition current varied tiny with potential until –0.75 V, at 

which point Ni2+ began reduction. At more negative potential, Cu and Ni were co-deposited. 

The anodic peak about 0.5 V is attributed to a selective dissolution of Cu from the Cu-Ni 

layers in the deposit. The co-deposition of Cu-Ni layers and then the selective etching of Cu 

from the deposit were completed in the same plating solution on exchanging the applied 

potential at –0.85 V and +0.55 V, respectively. The Cu-Ni layers were first coated on PGP 

electrode at –0.85 V; total deposited charge was 20 Coulomb. Electrochemical etching of Cu 

from the Cu-Ni layer was executed on exchanging the potential to +0.55 V until a current 

density 20 μA/cm2 to develop the Ni-nanotube layer. Chemical segregation within deposited 
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Cu-Ni grains was observed by previous authors.1,2 As a result, we have developed an efficient 

electrochemical technique to construct Ni-nanotube/PGP electrodes. The Ni-nanotube layer 

(excluding graphite or paper) loaded was on average 0.5 mg/cm2 (XP105DR Mettler Toledo). 

MnOx nanofiber layers were loaded onto the Ni-nanotube/PGP substrate by electrodeposition 

at 0.45 V in a solution containing 0.3 M Mn(CH3COO)2 (Sigma-Aldrich) and 0.1 M 

NH4CH3COO (Acros) at 27°C to assemble the nanoporous MOx/PGP electrodes with a Pt 

counter electrode and a SCE. The typical mass of the deposited oxide, measured with a 

microbalance (XP105DR Mettler Toledo, accuracy 0.1 mg), was ~12 mg. The mass of dead 

components (electrolyte, conductive paper, separator) was not considered to active materials 

(MnOx 2.0 mg/cm2 and VOx 2.0 mg/cm2).

Electrochemical measurements

Electrochemical performances of VOx/PGP and MnOx/PGP electrodes were measured in 

KCl solution (1 M, 27 °C) using cyclic voltammetry (CV) with a Pt counter electrode and a 

SCE. A Pt wire immersed in PAL solution contained in a glass tube with porous Vycor tip 

(Bioanalytical Systems, MF-2042) was used as a quasi-reference electrode in 

LiClO4−acetamide or PAL electrolyte systems. And the performances of VOx/PGP and 

MnOx/PGP electrodes in PAL electrolyte were measured with a Pt counter electrode and a 

quasi-reference electrode. An electrochemical impedance spectroscopy (EIS) experiment was 
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studied using the frequency range from 0.1 Hz to 100 kHz with an amplitude of 5 mV. All 

electrochemical measurements were made with a potentiostat (AUTOLAB).

Calculation method

Csp of cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) cycles in a three 

electrode system are calculated as follows,

Csp = Qm / ∆V            (1)

Csp ＝ I ∆t / ∆V w        (2)

in which Qm denotes the specific voltammetric charge ((based on mass of VOx or MnOx) 

integrated from CV, ∆V denotes the scanning range, I is applied current density (1–50 

A/g), w is VOx or MnOx mass and ∆t is duration of discharge cycling. With charge-

discharge curves based on two electrode systems, Casy is specific capacitance of an 

asymmetric supercapacitor, derived from GCD acquired by the equation Casy = I ∆t / ∆V 

W, in which W (W = w+ + w−) means the total active material masses on both positive and 

negative electrodes. The energy density (E) and power density (P) are calculated from the 

GCD curves according to eqs 3 and 4,3-5

E = 1/2 Casy ∆V2         (3)

P = E / ∆t             (4)

in which ∆V is cell voltage (i.e. 4.2 V) and ∆t is discharge time.
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(a)                                 (b) 

Figure S1. (a) Effect of addition of PAL gel to ink on the local sheet resistivity. The error 
ranges of all bars presented here are ±10%. (b) Shear rheometry data for the acetamide-

LiClO4 and PAL electrolyte.

(a)                             (b)

Figure S2. BJH pore size distributions of (a) VOx nanoporous and (b) MnOx nanofibers. Inset 

are N2 adsorption/desorption isotherms of (a) VOx nanoporous and (b) MnOx nanofibers.
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(a)                           (b)

Figure S3. XRD patterns of (a) VOx nanoporous and (b) MnOx nanofibers.

Figure S4. Core-level XPS spectrum of V 2p3/2 for a VOx film.
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Figure S5. CVs of VOx/PGP and bare PGP electrodes in PLA electrolyte at 5 mV/s.

Figure S6. Csp retentions of the VOx/PGP electrode in PAL gel electrolyte and in KCl 

solution as a function of scan rate.
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Figure S7. Csp retentions of the MnOx/PGP electrode in PAL gel electrolyte and in KCl 

solution as a function of scan rate.

Figure S8. Cycling performance of VOx/PGP and MnOx/PGP electrodes in PAL gel and KCl 

solution.
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Figure S9. CV curves of the potential limits for VOx/PGP and MnOx/PGP in PAL 

electrolytes at 5 mV/s.

Figure S10. Schematic illustration of the assembled HVWASC devices.
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Figure S11. GCD curves of the HVWASC device under various current densities (1−50 A/g)

Figure S12. Nyquist plot for HVWASC device using a sinusoidal signal of 5 mV. (Z′ is real 

impedance. Z′′ is imaginary impedance.)
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