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Fabrication of nanoporous VO,/PGP and MnO,/PGP electrodes

The PGP electrode as a cleaned film (area ~6 cm?) was pretreated by cleaning in ethanol

(2 min), soaking in 0.3M HCI (10 min), rinsing with deionized water, and then drying in a

fume cupboard at 27 °C. Metal-nucleation layers were produced on PGP substrates by a Pt

sputtered coating of thickness ~100 nm. The Pt/PGP substrates were highly conducting

(>1000 S/cm). A nanoporous VO, layer was loaded onto the Pt/PGP substrate by

electrochemical anodic deposition at 1.2 V in a mixture (volume ratio 1:1) of deionized water
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and ethanol containing 0.2 M VOSO, and 0.1 M Na(CH;COO) to assemble the nanoporous

VO,/PGP electrodes with a saturated calomel electrode (SCE) and a Pt counter electrode. The

Ni-nanotube layer was prepared on a PGP substrate with electrodeposition at 27°C with a

SCE and a Pt counter electrode. Firstly, Cu-Ni layers were electrodeposited from a plating

solution (0.5 M NiSQOy, 0.5 M NiCl,, 0.01 M CuSOy, and1 M H3;BO3). The deposition process

was performed at 27°C in a three-electrode cell with a Pt counter electrode and a SCE. PGP

electrode with area of ~6 cm? was assembled as the working electrode. Through the potential

scan from the open circuit potential (~0 V) in a negative direction, the onset of the Cu

reduction current at approximately —0.1 V was followed by a reduction peak associated with

the nucleation and growth of Cu metal film. As Cu?* has a limited mass transfer because of

its small concentration, the deposition current varied tiny with potential until —0.75 V, at

which point Ni** began reduction. At more negative potential, Cu and Ni were co-deposited.

The anodic peak about 0.5 V is attributed to a selective dissolution of Cu from the Cu-Ni

layers in the deposit. The co-deposition of Cu-Ni layers and then the selective etching of Cu

from the deposit were completed in the same plating solution on exchanging the applied

potential at —0.85 V and +0.55 V, respectively. The Cu-Ni layers were first coated on PGP

electrode at —0.85 V; total deposited charge was 20 Coulomb. Electrochemical etching of Cu

from the Cu-Ni layer was executed on exchanging the potential to +0.55 V until a current

density 20 pA/cm? to develop the Ni-nanotube layer. Chemical segregation within deposited
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Cu-Ni grains was observed by previous authors.!> As a result, we have developed an efficient
electrochemical technique to construct Ni-nanotube/PGP electrodes. The Ni-nanotube layer
(excluding graphite or paper) loaded was on average 0.5 mg/cm? (XP105DR Mettler Toledo).
MnOy nanofiber layers were loaded onto the Ni-nanotube/PGP substrate by electrodeposition
at 0.45 V in a solution containing 0.3 M Mn(CH3;COQO), (Sigma-Aldrich) and 0.1 M
NH4CH;COO (Acros) at 27°C to assemble the nanoporous MO,/PGP electrodes with a Pt
counter electrode and a SCE. The typical mass of the deposited oxide, measured with a
microbalance (XP105DR Mettler Toledo, accuracy 0.1 mg), was ~12 mg. The mass of dead
components (electrolyte, conductive paper, separator) was not considered to active materials
(MnOy 2.0 mg/cm? and VO 2.0 mg/cm?).
Electrochemical measurements

Electrochemical performances of VO,/PGP and MnO,/PGP electrodes were measured in
KClI solution (1 M, 27 °C) using cyclic voltammetry (CV) with a Pt counter electrode and a
SCE. A Pt wire immersed in PAL solution contained in a glass tube with porous Vycor tip
(Bioanalytical Systems, MF-2042) was used as a quasi-reference electrode in
LiClOs—acetamide or PAL electrolyte systems. And the performances of VO,/PGP and
MnO,/PGP electrodes in PAL electrolyte were measured with a Pt counter electrode and a

quasi-reference electrode. An electrochemical impedance spectroscopy (EIS) experiment was
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studied using the frequency range from 0.1 Hz to 100 kHz with an amplitude of 5 mV. All
electrochemical measurements were made with a potentiostat (AUTOLAB).

Calculation method

Cyp of cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) cycles in a three

electrode system are calculated as follows,

Cyp=0m/AV (1)

Cyp = IAt/AVwW (2)
in which Q,, denotes the specific voltammetric charge ((based on mass of VO, or MnOy)
integrated from CV, AV denotes the scanning range, [ is applied current density (1-50
A/g), w is VO, or MnO, mass and Af is duration of discharge cycling. With charge-
discharge curves based on two electrode systems, C,, is specific capacitance of an
asymmetric supercapacitor, derived from GCD acquired by the equation Cu,, = I At/ AV
W, in which W (W = w* + w™) means the total active material masses on both positive and
negative electrodes. The energy density (£) and power density (P) are calculated from the
GCD curves according to eqs 3 and 4,3

E=1/2 Cuy AV? 3)

P=E/At 4)

in which AV is cell voltage (i.e. 4.2 V) and At is discharge time.
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Figure S1. (a) Effect of addition of PAL gel to ink on the local sheet resistivity. The error
ranges of all bars presented here are £10%. (b) Shear rheometry data for the acetamide-
LiClO4 and PAL electrolyte.
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Figure S2. BJH pore size distributions of (a) VO, nanoporous and (b) MnOy nanofibers. Inset

are N, adsorption/desorption isotherms of (a) VO, nanoporous and (b) MnO, nanofibers.
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Figure S3. XRD patterns of (a) VO, nanoporous and (b) MnO, nanofibers.
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Figure S4. Core-level XPS spectrum of V 2p;/, for a VO film.
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Figure SS. CVs of VO,/PGP and bare PGP electrodes in PLA electrolyte at 5 mV/s.
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Figure S6. C,, retentions of the VO,/PGP electrode in PAL gel electrolyte and in KCI

solution as a function of scan rate.
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Figure S7. C,, retentions of the MnO,/PGP electrode in PAL gel electrolyte and in KCI

solution as a function of scan rate.
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Figure S8. Cycling performance of VO,/PGP and MnO,/PGP electrodes in PAL gel and KCl

solution.
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Figure S9. CV curves of the potential limits for VO,/PGP and MnO,/PGP in PAL

electrolytes at 5 mV/s.
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Figure S10. Schematic illustration of the assembled HVWASC devices.
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Figure S11. GCD curves of the HVWASC device under various current densities (150 A/g)
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Figure S12. Nyquist plot for HVWASC device using a sinusoidal signal of 5 mV. (Z' is real

impedance. Z" is imaginary impedance.)
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