4.2 V Wearable Asymmetric Supercapacitor Devices Based on VO_x//MnO_x

Electrode and Eco-friendly Deep Eutectic Solvent-Based Gel Electrolyte

Ming-Jay Deng,^{1,2,*} Tzung-Han Chou,² Li-Hsien Yeh,^{2,3,*} Jin-Ming Chen,^{4,*} Kueih-Tzu Lu⁴

¹ Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

² Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 4002, Taiwan

³ Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

⁴ National Synchrotron Radiation Research Center, Hsinchu, Taiwan

* Corresponding authors:

E-mail: martinez730523@yahoo.com.tw and dengmj@yuntech.edu.tw (Ming-Jay Deng);

<u>lhyeh@mail.ntust.edu.tw</u> (Li-Hsien Yeh); <u>jmchen@nsrrc.org.tw</u> (Jin-Ming Chen)

Fabrication of nanoporous VO_x/PGP and MnO_x/PGP electrodes

The PGP electrode as a cleaned film (area ~6 cm²) was pretreated by cleaning in ethanol (2 min), soaking in 0.3M HCl (10 min), rinsing with deionized water, and then drying in a fume cupboard at 27 °C. Metal-nucleation layers were produced on PGP substrates by a Pt sputtered coating of thickness ~100 nm. The Pt/PGP substrates were highly conducting (>1000 S/cm). A nanoporous VO_x layer was loaded onto the Pt/PGP substrate by electrochemical anodic deposition at 1.2 V in a mixture (volume ratio 1:1) of deionized water

and ethanol containing 0.2 M VOSO₄ and 0.1 M Na(CH₃COO) to assemble the nanoporous VO_x/PGP electrodes with a saturated calomel electrode (SCE) and a Pt counter electrode. The Ni-nanotube layer was prepared on a PGP substrate with electrodeposition at 27°C with a SCE and a Pt counter electrode. Firstly, Cu-Ni layers were electrodeposited from a plating solution (0.5 M NiSO₄, 0.5 M NiCl₂, 0.01 M CuSO₄, and 1 M H₃BO₃). The deposition process was performed at 27°C in a three-electrode cell with a Pt counter electrode and a SCE. PGP electrode with area of $\sim 6 \text{ cm}^2$ was assembled as the working electrode. Through the potential scan from the open circuit potential (~0 V) in a negative direction, the onset of the Cu reduction current at approximately -0.1 V was followed by a reduction peak associated with the nucleation and growth of Cu metal film. As Cu²⁺ has a limited mass transfer because of its small concentration, the deposition current varied tiny with potential until -0.75 V, at which point Ni²⁺ began reduction. At more negative potential, Cu and Ni were co-deposited. The anodic peak about 0.5 V is attributed to a selective dissolution of Cu from the Cu-Ni layers in the deposit. The co-deposition of Cu-Ni layers and then the selective etching of Cu from the deposit were completed in the same plating solution on exchanging the applied potential at -0.85 V and +0.55 V, respectively. The Cu-Ni layers were first coated on PGP electrode at -0.85 V; total deposited charge was 20 Coulomb. Electrochemical etching of Cu from the Cu-Ni layer was executed on exchanging the potential to +0.55 V until a current density 20 µA/cm² to develop the Ni-nanotube layer. Chemical segregation within deposited Cu-Ni grains was observed by previous authors.^{1,2} As a result, we have developed an efficient electrochemical technique to construct Ni-nanotube/PGP electrodes. The Ni-nanotube layer (excluding graphite or paper) loaded was on average 0.5 mg/cm² (XP105DR Mettler Toledo). MnO_x nanofiber layers were loaded onto the Ni-nanotube/PGP substrate by electrodeposition at 0.45 V in a solution containing 0.3 M Mn(CH₃COO)₂ (Sigma-Aldrich) and 0.1 M NH₄CH₃COO (Acros) at 27°C to assemble the nanoporous MO_x/PGP electrodes with a Pt counter electrode and a SCE. The typical mass of the deposited oxide, measured with a microbalance (XP105DR Mettler Toledo, accuracy 0.1 mg), was ~12 mg. The mass of dead components (electrolyte, conductive paper, separator) was not considered to active materials (MnO_x 2.0 mg/cm² and VO_x 2.0 mg/cm²).

Electrochemical measurements

Electrochemical performances of VO_x/PGP and MnO_x/PGP electrodes were measured in KCl solution (1 M, 27 °C) using cyclic voltammetry (CV) with a Pt counter electrode and a SCE. A Pt wire immersed in PAL solution contained in a glass tube with porous Vycor tip (Bioanalytical Systems, MF-2042) was used as a quasi-reference electrode in LiClO₄–acetamide or PAL electrolyte systems. And the performances of VO_x/PGP and MnO_x/PGP electrodes in PAL electrolyte were measured with a Pt counter electrode and a quasi-reference electrode. An electrochemical impedance spectroscopy (EIS) experiment was

studied using the frequency range from 0.1 Hz to 100 kHz with an amplitude of 5 mV. All electrochemical measurements were made with a potentiostat (AUTOLAB).

Calculation method

 C_{sp} of cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) cycles in a three electrode system are calculated as follows,

$$C_{sp} = Q_{\rm m} \,/\, \Delta V \tag{1}$$

$$C_{sp} = I \Delta t / \Delta V w \qquad (2)$$

in which Q_m denotes the specific voltammetric charge ((based on mass of VO_x or MnO_x) integrated from CV, ΔV denotes the scanning range, *I* is applied current density (1–50 A/g), *w* is VO_x or MnO_x mass and Δt is duration of discharge cycling. With chargedischarge curves based on two electrode systems, C_{asy} is specific capacitance of an asymmetric supercapacitor, derived from GCD acquired by the equation $C_{asy} = I \Delta t / \Delta V$ *W*, in which $W (W = w^+ + w^-)$ means the total active material masses on both positive and negative electrodes. The energy density (*E*) and power density (*P*) are calculated from the GCD curves according to eqs 3 and 4,³⁻⁵

$$E = 1/2 \ C_{asy} \,\Delta V^2 \tag{3}$$

$$P = E / \Delta t \tag{4}$$

in which ΔV is cell voltage (*i.e.* 4.2 V) and Δt is discharge time.

Figure S1. (a) Effect of addition of PAL gel to ink on the local sheet resistivity. The error ranges of all bars presented here are $\pm 10\%$. (b) Shear rheometry data for the acetamide-LiClO₄ and PAL electrolyte.

Figure S2. BJH pore size distributions of (a) VO_x nanoporous and (b) MnO_x nanofibers. Inset are N₂ adsorption/desorption isotherms of (a) VO_x nanoporous and (b) MnO_x nanofibers.

Figure S3. XRD patterns of (a) VO_x nanoporous and (b) MnO_x nanofibers.

Figure S4. Core-level XPS spectrum of V $2p_{3/2}$ for a VO_x film.

Figure S5. CVs of VO_x/PGP and bare PGP electrodes in PLA electrolyte at 5 mV/s.

Figure S6. C_{sp} retentions of the VO_x/PGP electrode in PAL gel electrolyte and in KCl

solution as a function of scan rate.

Figure S7. C_{sp} retentions of the MnO_x/PGP electrode in PAL gel electrolyte and in KCl

solution as a function of scan rate.

Figure S8. Cycling performance of VO_x/PGP and MnO_x/PGP electrodes in PAL gel and KCl

solution.

Figure S9. CV curves of the potential limits for VO_x/PGP and MnO_x/PGP in PAL electrolytes at 5 mV/s.

Figure S10. Schematic illustration of the assembled HVWASC devices.

Figure S11. GCD curves of the HVWASC device under various current densities (1–50 A/g)

Figure S12. Nyquist plot for HVWASC device using a sinusoidal signal of 5 mV. (Z' is real

impedance. Z" is imaginary impedance.)

References

- 1. L. Sun, C. L. Chien and P. C. Searson, Chem. Mater., 2004, 16, 3125-3129.
- 2. Z. Liu, D. Elbert, C.L. Chien and P. C. Searson, Nano Lett., 2008, 8, 2166–2170.
- M. J. Deng, C. Z. Song, C. C. Wang, Y. C. Tseng, J. M. Chen and K. T. Lu, ACS Appl. Mater. Interfaces, 2015, 7, 9147–9156.
- 4. C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Nano Lett., 2010, 10, 4863-4868.
- 5. R. B. Rakhi, W. Chen and D. Cha, Nano Lett., 2012, 12, 2559-2567.