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1. Low temperature nitrogen adsorption/desorption analysis

The analysis was carried out at liquid nitrogen temperature (-196 °C) using Micromeritics
Gemini VI surface area analyzer. For APTCNSiOMe Sger = 2.3 m?/g, for APTCNSiIOBU Sget =
3.5 m?g.

2. Positron annihilation lifetime spectroscopy (PALS) measurements

The positron annihilation lifetime decay curves were measured at room temperature using an
EG@GOrtec “fast-fast” lifetime spectrometer. A nickel-foil-supported [*Ti] radioactive positron
source was used. Two stacks of film samples, each with a total thickness of about 1 mm, were

placed on either side of the source. All the measurements were performed in inert (nitrogen)
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atmosphere. The time resolution was 230 ps (full width at the halfmaximum (fwhm) of the
prompt coincidence curve). The contribution from annihilation in the source material, a
background, and instrumental resolution were taken into account in the PATFIT program for
treating the experimental lifetime data. The resulting data were determined as an average value
from the several spectra collected for the same sample, having an integral number of counts of at

least 10° in each spectrum.

PALS is based on the measurements of positron lifetime spectra in polymers — lifetimes
(ns) and corresponding intensities Ii (%). Longer lifetimes 13 and 14 can be related to the mean

size of free volume elements (FVE) in polymers according to Tao-Eldrup formula:*?

-1
T, =40 +2/1- R +i8in 2R, :
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where 1 = t3 0r 14 are 0-Ps lifetimes and Ri = Rz or R4 are the radii of FVE expressed in

nanoseconds and angstroms respectively; A - stands for the intrinsic ortho-Ps annihilation rate

(0.7-10° s1); AR = 1.66 A is the fitted empirical parameter.
3. Density measurements

The density of a synthesized polymer was determined using helium pycnometer AccuPyc
1340. For the determination of the density, the polymers’ films were used (the thickness was

90-120 pm and the weights of samples were up to 0.7 g).
4. DMA measurements

DMA measurements were performed in the demanded temperature range at 1Hz
frequency under Ar at a heating rate 3 K/min or at the constant temperature in the demanded
temperature range of frequency. The samples for DMA were 0.40 mm in thickness and 9.53 mm
in the diameter and the corresponding measurements were carried out using a Mettler Toledo
DMA/SDTA861° instrument. The cross-link density of the prepared rubbery polytricyclononenes
was estimated using the relationship between the storage modulus (G’) and cross-link density

()3

G’=vRT/2,
where T - is absolute temperature, R is the gas constant.
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5. Supplementary figures
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Fig. S1 Mass-spectrum of TCNSIOPr (a - anti-isomer, b - syn-isomer).
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Fig. S2 *H NMR spectrum of TCNSiOPr (solvent: CDCls).
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Fig. S3 1*C APT NMR spectrum of TCNSiOPr (solvent: CDCls).
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Fig. S4 2°Si NMR spectrum of TCNSiOPr (solvent: CDCls).
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S5 Mass-spectrum of TCNSIOBuU (a - anti-isomer, b - syn-isomer).
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Fig. S6 “H NMR spectrum of TCNSIOBu (solvent: CDCls).
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Fig. S7 13C APT NMR spectrum of TCNSiOBu (solvent: CDCls).
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Fig. S8 2°Si NMR spectrum of TCNSiOBu (solvent: CDCls).
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Fig. S9 *H NMR spectrum of MPTCNSiOMe (solvent: CDCls).
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Fig. S10 3C NMR spectrum of MPTCNSiOMe (solvent: CDCls).
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Fig. S11 2°Si NMR spectrum of MPTCNSiOMe (solvent: CDCls).
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Fig. S12 'H NMR spectrum of MPTCNSIOEt (solvent: CDCls).
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Fig. S13 3C NMR spectrum of MPTCNSIOEt (solvent: CDCls).
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Fig. S15 *H NMR spectrum of MPTCNSIOPr (solvent: CDCls).
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Fig. S14 2°Si NMR spectrum of MPTCNSIOEt (solvent: CDCls).
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Fig. S16 *3C NMR spectrum of MPTCNSIOPr (solvent: CDCls).
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Fig. S17 2°Si NMR spectrum of MPTCNSIOPr (solvent: CDCls).
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Fig. S19 3C NMR spectrum of MPTCNSiOBu (solvent: CDCls).
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Fig. S18 *H NMR spectrum of MPTCNSIiOBuU (solvent: CDCls).
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Fig. S21 'H NMR spectrum of APTCNSiOMe (solvent: CDCls).
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Fig. S20 2°Si NMR spectrum of MPTCNSiOBu (solvent: CDCl3).
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Fig. S22 3C NMR spectrum of APTCNSiOMe (solvent: CDCls).
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Fig. S23 2°Si NMR spectrum of APTCNSiOMe (solvent: CDCls).
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Fig. S24 'H NMR spectrum of APTCNSIOEt (solvent: CDCls).
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Fig. S25 3C NMR spectrum of APTCNSIOEt (solvent: CDCls).
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Fig. S26 2°Si NMR spectrum of APTCNSIOEt (solvent: CDCls).
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Fig. S27 *H NMR spectrum of APTCNSIOPr (solvent: CDCls).
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Fig. S28 13C NMR spectrum of APTCNSIOPr (solvent: CDCls).
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Fig. S29 2°Si NMR spectrum of APTCNSIOPr (solvent: CDCls).
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Fig. S30 *H NMR spectrum of APTCNSiOBu (solvent: CDCls).
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Fig. S31 3C NMR spectrum of APTCNSiOBuU (solvent: CDCls).
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Fig. S32 2°Si NMR spectrum of APTCNSiOBuU (solvent: CDCls).
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Fig. S33 IR spectra of metathesis and addition poly(TCNSiOAlK)es.

21



——

35 -

30 1 ——500 Hz
< 25 100 Hz
S ——50 Hz
6 20 - —25 Hz

10 Hz

15 4

—b5 Hz
10 - —2Hz
—1Hz
5 .
—250 Hz
0 T T T T T T -1 1
-50 -40 -30 -20 -10 0 10 20 30

T,°C

Fig. S34 Plot of storage modulus versus temperature from DMA analysis for cross-
linked MPTCNSIORPTr at different frequencies.
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Fig. S35 Plot of storage modulus versus frequency from DMA analysis for cross-
linked MPTCNSIOPTr at different temperatures.
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