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1. Low temperature nitrogen adsorption/desorption analysis 

The analysis was carried out at liquid nitrogen temperature (‒196 °C) using Micromeritics 

Gemini VI surface area analyzer. For APTCNSiOMe SBET = 2.3 m2/g, for APTCNSiOBu SBET = 

3.5 m2/g. 

2. Positron annihilation lifetime spectroscopy (PALS) measurements 

The positron annihilation lifetime decay curves were measured at room temperature using an 

EG@GOrtec “fast-fast” lifetime spectrometer. A nickel-foil-supported [44Ti] radioactive positron 

source was used. Two stacks of film samples, each with a total thickness of about 1 mm, were 

placed on either side of the source. All the measurements were performed in inert (nitrogen) 
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atmosphere. The time resolution was 230 ps (full width at the halfmaximum (fwhm) of the 

prompt coincidence curve). The contribution from annihilation in the source material, a 

background, and instrumental resolution were taken into account in the PATFIT program for 

treating the experimental lifetime data. The resulting data were determined as an average value 

from the several spectra collected for the same sample, having an integral number of counts of at 

least 106 in each spectrum. 

PALS is based on the measurements of positron lifetime spectra in polymers – lifetimes τi 

(ns) and corresponding intensities Ii (%). Longer lifetimes τ3 and τ4 can be related to the mean 

size of free volume elements (FVE) in polymers according to Tao-Eldrup formula:1-2 
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where τi = τ3 or τ4 are o-Ps lifetimes and Ri = R3 or R4 are the radii of FVE expressed in 

nanoseconds and angstroms respectively; T

0 - stands for the intrinsic ortho-Ps annihilation rate

(0.7·109 s-1); ΔR = 1.66 Å is the fitted empirical parameter. 

3. Density measurements

The density of a synthesized polymer was determined using helium pycnometer AccuPyc 

1340. For the determination of the density, the polymers’ films were used (the thickness was 

90-120 µm and the weights of samples were up to 0.7 g).

4. DMA measurements

DMA measurements were performed in the demanded temperature range at 1Hz 

frequency under Ar at a heating rate 3 K/min or at the constant temperature in the demanded 

temperature range of frequency. The samples for DMA were 0.40 mm in thickness and 9.53 mm 

in the diameter and the corresponding measurements were carried out using a Mettler Toledo 

DMA/SDTA861e instrument. The cross-link density of the prepared rubbery polytricyclononenes 

was estimated using the relationship between the storage modulus (G’) and cross-link density 

(ν):3-5 

G’=νRT/2, 

where T - is absolute temperature, R is the gas constant. 
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5. Supplementary figures

a 

b 

Fig. S1 Mass-spectrum of TCNSiOPr (a - anti-isomer, b - syn-isomer). 
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Fig. S2 1H NMR spectrum of TCNSiOPr (solvent: CDCl3). 
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Fig. S3 13C APT NMR spectrum of TCNSiOPr (solvent: CDCl3). 



6 

29Si-TCNSiOPr.esp

-41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57
Chemical Shift (ppm)

-4
8
.0

5

-4
8
.8

4

Fig. S4 29Si NMR spectrum of TCNSiOPr (solvent: CDCl3). 
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a 
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Fig. S5 Mass-spectrum of TCNSiOBu (a - anti-isomer, b - syn-isomer). 
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Fig. S6 1H NMR spectrum of TCNSiOBu (solvent: CDCl3). 
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Fig. S7 13C APT NMR spectrum of TCNSiOBu (solvent: CDCl3). 
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Fig. S8 29Si NMR spectrum of TCNSiOBu (solvent: CDCl3). 
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Fig. S9 1H NMR spectrum of MPTCNSiOMe (solvent: CDCl3). 
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Fig. S10 13C NMR spectrum of MPTCNSiOMe (solvent: CDCl3). 
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Fig. S11 29Si NMR spectrum of MPTCNSiOMe (solvent: CDCl3). 
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Fig. S12 1H NMR spectrum of MPTCNSiOEt (solvent: CDCl3). 
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Fig. S13 13C NMR spectrum of MPTCNSiOEt (solvent: CDCl3). 
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Fig. S14 29Si NMR spectrum of MPTCNSiOEt (solvent: CDCl3). 
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Fig. S15 1H NMR spectrum of MPTCNSiOPr (solvent: CDCl3). 
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Fig. S16 13C NMR spectrum of MPTCNSiOPr (solvent: CDCl3). 
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Fig. S17 29Si NMR spectrum of MPTCNSiOPr (solvent: CDCl3). 
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Fig. S18 1H NMR spectrum of MPTCNSiOBu (solvent: CDCl3). 
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Fig. S19 13C NMR spectrum of MPTCNSiOBu (solvent: CDCl3). 
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Fig. S20 29Si NMR spectrum of MPTCNSiOBu (solvent: CDCl3). 
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Fig. S21 1H NMR spectrum of APTCNSiOMe (solvent: CDCl3). 
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Fig. S22 13C NMR spectrum of APTCNSiOMe (solvent: CDCl3). 
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Fig. S23 29Si NMR spectrum of APTCNSiOMe (solvent: CDCl3). 
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Fig. S24 1H NMR spectrum of APTCNSiOEt (solvent: CDCl3). 
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Fig. S25 13C NMR spectrum of APTCNSiOEt (solvent: CDCl3). 
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Fig. S26 29Si NMR spectrum of APTCNSiOEt (solvent: CDCl3). 
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Fig. S27 1H NMR spectrum of APTCNSiOPr (solvent: CDCl3). 
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Fig. S28 13C NMR spectrum of APTCNSiOPr (solvent: CDCl3). 
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Fig. S29 29Si NMR spectrum of APTCNSiOPr (solvent: CDCl3). 
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Fig. S30 1H NMR spectrum of APTCNSiOBu (solvent: CDCl3). 
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Fig. S31 13C NMR spectrum of APTCNSiOBu (solvent: CDCl3). 
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Fig. S32 29Si NMR spectrum of APTCNSiOBu (solvent: CDCl3). 

600 800 1000 1200 1400 1600 3000 3300 3600

wavenumber, cm
-1

D

APTCNSiOMe

MPTCNSiOBu

APTCNSiOBu

965 (trans-C=C)730 (cis-C=C)

800 (Si-C)

1080 (Si-O)

Fig. S33 IR spectra of metathesis and addition poly(TCNSiOAlk)es. 
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Fig. S34 Plot of storage modulus versus temperature from DMA analysis for cross-

linked MPTCNSiOPr at different frequencies. 

Fig. S35 Plot of storage modulus versus frequency from DMA analysis for cross-

linked MPTCNSiOPr at different temperatures. 

0

5

10

15

20

25

30

35

40

-50 -40 -30 -20 -10 0 10 20 30

G
', 

M
P

a

T, oC

500 Hz

100 Hz

50 Hz

25 Hz

10 Hz

5 Hz

2 Hz

1 Hz

250 Hz

0

5

10

15

20

25

30

35

0,01 0,1 1 10 100

G
', 

M
P

a

Frequency, Hz

298 K

273 K

268 K




