Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Constructing hexagonal copper-coin-shaped

NiCoSe₂@NiO@CoNi₂S₄@CoS₂ hybrid nanoarray on nickel foam as

a robust oxygen evolution reaction electrocatalyst

Zhoufeng Xu^a, Hailong Pan^a, Yu Lin^a, Zhi Yang^a, Jinlei Wang^{ab}, Yaqiong Gong^{ab*}

^a School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, People's Republic of China.

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002.

E-mail: gyq@nuc.edu.cn

Fig. S1 SEM image of NF.

Fig. S2 The XRD spectra of NiCo-Precursor.

Fig. S3 SEM image of NiCo-Precursor.

Fig. S4 Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for (a) NiCoSe₂@NiO@CoNi₂S₄@CoS₂/NF, (b) NiCoSe₂@NiO/NF, (c) CoNi₂S₄@CoS₂/NF in 1.0 M KOH.

Fig. S5 (a) Polarization curves of NiCoSe₂@NiO@CoNi₂S₄@CoS₂/NF for OER in 30 wt% KOH solution, (b) LSV curve of NiCoSe₂@NiO@CoNi₂S₄@CoS₂/NF for HER in 1.0 KOH solution.

Fig. S6 SEM image of NiCoSe₂@NiO@CoNi₂S₄@CoS₂/NF after stability test for OER.

Fig. S7 XRD pattern of NiCoSe₂@NiO@CoNi₂S₄@CoS₂/NF after stability test for OER.

Fig. S8 The equivalent circuit for fitting the EIS results.

Fig. S9 The XPS spectra of NiCoSe₂@NiO@CoNi₂S₄@CoS₂/NF after OER stability test: (a) survey, (b) Ni 2p, (c) Co 2p, (d) S 2p and (f) Se 3d regions.

Catalyst	Electrolyte	Overpotential	Ref.
NiCoSe ₂ @NiO@ CoNi ₂ S ₄ @CoS ₂ /NF	1 M KOH	310@30 mA cm ⁻²	This work
CoNi ₂ S ₄ @CoS ₂ /NF	1 M KOH	365@30 mA cm ⁻²	
NiCoSe ₂ @NiO/NF	1 M KOH	369@30 mA cm ⁻²	
MnO ₂ /NiCo ₂ O ₄ /NF	1 M KOH	340@10 mA cm ⁻²	1
Ni ₃ S ₂ /NF	1 M KOH	340@10 mA cm ⁻²	2
NG/NiSe ₂ /NF	1 M KOH	307@20 mA cm ⁻²	3
Cu ₃ P/NF	1 M KOH	320@10 mA cm ⁻²	4
NiO/NF	1 M KOH	310@10 mA cm ⁻²	5
P-Co-Ni-S/NF	1 M KOH	296@100 mA cm ⁻²	6
NiCoFeP/NF	1 M KOH	271@200 mA cm ⁻²	7
S-NiFe ₂ O ₄ /Ni ₃ Fe/NW	1 M KOH	260@100 mA cm ⁻²	8
FeNiOH/NF	1 M KOH	271@20 mA cm ⁻²	9

Table 1. Comparison of OER properties for catalysts of relevant catalytic materials

Catalyst	Electrolyte	Overall voltage (10 mA cm ⁻²)	Ref.
NiCoSe ₂ @NiO@ CoNi ₂ S ₄ @CoS ₂ /NF	1 M KOH	1.583 V	This work
NiCo ₂ S ₄ /NF	1 M KOH	1.63 V	10
NiFe/NiCo ₂ O ₄ /NF	1 M KOH	1.67 V	11
Ni ₂ P	1 M KOH	1.63 V	12
NiS/NF	1 M KOH	1.64 V	13
Ni ₃ Se ₂	1 M KOH	1.65 V	14
CoP films	1 M KOH	1.63 V	15
Fe-Ni ₃ S ₂ /NF	1 M KOH	1.54 V	16
F _{0.25} C ₁ CH/NF	1 M KOH	1.45 V	17
P-Ni(OH) ₂ /NiMoO ₄ /NF	1 M KOH	1.55 V	18
NiFeP-SiO ₂ /NF	1 M KOH	1.57 V	19

Table 2. Comparison of two-electrode water-splitting for catalysts of relevant catalytic materials

References

- 1. K.L. Yan, X. Shang, W.K. Gao, J. Alloy. Compd., 2017, 719, 314-321.
- 2. T. Zhu, L. Zhu, J. Wang, J. Mater. Chem. A, 2016, 4, 13916-13922.
- 3. J. Yu, Q. Li, C. Xu, J. Mater. Chem. A, 2017, 5, 3981-3986.
- 4. A. Han, H. Zhang, R.Yuan, H. Ji, P. Du, ACS Appl. Mater. Inte., 2017, 9, 2240-2248.
- P. T. Babara, A. C. Lokhandea, M. G. Ganga, B. S. Pawarb, S. M. Pawar, Jin Hyeok Kim, J. Ind. Eng. Chem., 2018, 60, 493-497.
- 6. G. Zhang, Y. S. Feng, W. T. Lu, ACS Cata., 2018, 6, 5431-5441.
- 7. L. Hui, Y. R. Xue, D. Z. Jia, Adv. Energy Mate, 2018, 8, 1800175.
- 8. W. G. Xi, G. Yan, H. Q. Tan, Dalton T., 2018, 47, 8787-8793.
- 9. H. Yang, F. S. Li, X. J. Wu, Electrochim. Acta, 2018, 281, 60-68.
- 10. A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 2016, 26, 4661-4672.
- 11. C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater. 2016, 26, 3515-3523.
- 12. L. A. Stern, F. Song, L. Feng, X. Hu, Sci. 2015, 8, 2347-2351.
- 13. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, *Chem.Commun.* 2016, **52**, 1486-1489.
- 14. J. Shi, J. Hu, Y. Luo, X. Sun, A. M. Asiri, Catal. Sci. Technol. 2015, 5, 4954-4958.
- 15. N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. 2015, 127, 6349-6352
- F. F. Zhang, Y. C. Ge, H. Chu, P. Dong, J. F. Shen, ACS Appl. Mater. Inte., 2018, 10, 7087-7095.
- 17. Q. Zhang, D. F. Yan, Z. Z. Nie, X. B. Qiu, S.Y. Wang, D. W. Su, G. X. Wang, Z. J. Wu, ACS *Appl. Mater. Inte.*, 2018, **1**, 571-579.
- 18. M. Y. Gao, J. R. Zeng, Q. B. Zhang, C. Yang, X. T. Li, Y. X. Hua, C. Y. Xu, J. Mater. Chem. A, 2018, 6, 1551-1560.
- 19. J. T. Ren, G. G. Yuan, C. C. Wang, L. Chen, Z. Y. Yuan, J. Mater. Chem. A, 2018, 10, 10620-10628.