Electronic Supplementary information

S-doped porous carbon nanospheres confined SnS with enhanced electrochemical performance for sodium-ion batteries

Fig. S1. E vs. t profile for a single GITT during discharge process.

Fig. S2. The SEM images of Sn-Precursor obtained by using different raw materials. (a) 0.2 g $SnCl_2 \bullet H_2O$; (b) 0.2 g ascorbic acid/0.1 g $SnCl_2 \bullet H_2O$; (c) 0.4 g ascorbic acid/0.2 g $SnCl_2 \bullet H_2O$.

Fig. S3. XRD patterns of the bulk SnS obtained by annealing Sn with S powder in Ar atmosphere at 400 $^{\circ}$ C.

Fig. S4. The SEM images (a, b) of bulk SnS.

Fig. S5. Typical XPS survey spectra (a) and the corresponding Sn 3d (b) XPS spectra of the SnS@SPC composite.

Fig. S6. Electrochemical impedance spectra of the SnS@SPC electrode at open circuit voltage and after 10 cycles (a) and the bulk SnS electrode (b) after 10 cycles. Inset is the equivalent circuit model for the impedance spectra. R_s is the combination of electrolyte resistance and ohmic resistance of cell components. R_f is the resistance of solid electrolyte interface (SEI) films. For the fresh electrodes, no SEI films were formed. R_{ct} is represented for the charge transfer resistance of electrochemical reactions. C_f , *QPE*, Z_w and C_{in} are the surface-passivating layer capacitance, double layer capacitance, Warburg impedance, and the reflection of intercalation capacitance, respectively.

Samples	<i>R</i> _s (Ω)	$R_{\rm f}(\Omega)$	$R_{\rm ct}(\Omega)$	$R_{\text{cell}}(\Omega)(R_{\text{cell}}=R_{\text{s}}+R_{\text{f}}+R_{\text{ct}})$
Open circuit voltage	10.68		334.2	344.88
10 th cycle	10.83	18.16	363.4	392.39

Table S1 Fitting parameters of components for Nyquist plots of SnS@SPC at oper	I
circuit voltage or after 10 th cycle.	

Table S2 Fitting parameters of components in analog circuit for Nyquist plots of Fig.S6b.

Samples	<i>R</i> _s (Ω)	$R_{\rm f}(\Omega)$	$R_{\rm ct}(\Omega)$	$R_{\text{cell}}(\Omega)(R_{\text{cell}}=R_{\text{s}}+R_{\text{f}}+R_{\text{ct}})$
SnS@SPC	10.83	18.16	363.4	392.39
Bulk SnS	3.21	27.65	873.6	904.46