Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI) for

Activity and Selectivity Regulation through varying the Size of Cobalt Active Sites in Photocatalytic CO₂ Reduction

Qiaoqiao Mu,^{‡ab} Wei Zhu, ^{‡ab} Gangbin Yan,^{ab} Yuebin Lian,^{ab} Yuanzhou Yao,^{ab} Qin Li,^{ab} Yuyu Tian,^c Peng Zhang,^c Zhao Deng^{*ab} and Yang Peng,^{*ab}

^a Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China.

^b Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, P. R. China.

^c State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

*Corresponding author: <u>zdeng@suda.edu.cn</u> (Zhao Deng); <u>ypeng@suda.edu.cn</u> (Yang Peng).

[‡]These author contributed equally to this work

Fig. S1. (a) N_2 sorption isotherms for ZIF-8, ZIF-67 and BMZIF_{1:1} at 77 K. Filled and open symbols represent adsorption and desorption branches, respectively. (b) TGA curves of ZIF-8, ZIF-67 and BMZIF_{1:1}.

Fig. S2. TEM of BMZIF_{1:1} and the corresponding elemental mapping of C, N, Zn, Co.

Fig. S3. The stability of ZIFs in the mixed solution of $H_2O/TEOA/MeCN$ (2:2:10).

Fig. S5. SEM (a) and TEM (b) images of $BMZIF_{1:1}$ annealed at 900°C.

Fig. S6. N₂ sorption isotherms for C-BMZIFs at 77 K.

Fig. S7. TEM images of (a, b) C-ZIF-67 and (d, e) C-BMZIF_{1:1}. Cobalt particle size distributions of (c) C-ZIF-67 and (f) C-BMZIF_{1:1}.

Fig. S8. Low magnification SEM of C-BMZIF_{1:1} and the corresponding elemental mapping of C, N, Zn and Co.

Fig. S9. SEM images of BMZIFs with different ratio of Zn/Co: (a) 5:1, (b) 3:1, (c) 1:1, (d) 1:3, (e) 1:5.

Fig. S10. Size distributions of the BMZIFs with diffrent ratio of Zn/Co,(a) 1:0 (b) 5:1, (c) 3:1, (d) 1:1, (e) 1:3, (f) 1:5, (g) 0:1. (h) Average particle size distribution of BMZIFs.

Fig. S11. SEM images of C-BMZIFs with different ratio of Zn/Co: (a) 5:1, (b) 3:1, (c) 1:3, (d) 1:5.

Fig. S12. (a) HRTEM image of C-BMZIF_{5:1}. (b) HAASF-STEM image and the corresponding EDS images for C, N, Zn, Co in C-BMZIF_{5:1}.

Fig. S13. Particle size distributions of Co: (a) 3:1, (b) 1:1; (c) 1:3; (d) 1:5; (e) 0:1.

Fig. S14. XPS survey spectra of C-BMZIFs with different ratio of Zn/Co, (a) 1:0, (b) 5:1, (c) 3:1, (d) 1:1, (e) 1:3, (f) 1:5, (g) 0:1.

Fig. S15. High-resolution C 1s spectra of C-BMZIFs with different ratio of Zn/Co, (a) 1:0 (b) 5:1, (c) 3:1, (d) 1:1, (e) 1:3, (f) 1:5, (g) 0:1.

Fig. S16. High-resolution N1s spectra of C-BMZIFs with different ratio of Zn/Co, (a) 1:0 (b) 5:1, (c) 3:1, (d) 1:1, (e) 1:3, (f) 1:5, (g) 0:1.

Fig. S17. High-resolution Zn 2p spectra of C-BMZIFs with different ratio of Zn/Co, (a) 1:0, (b) 5:1, (c) 3:1, (d) 1:1, (e) 1:3, (f) 1:5.

Fig. S18. (a) Products detection. GC plots of the gas products. (b) ¹HNMR of liquid products of C-BMZIF_{1:1} after photocatalytic reaction.

Fig. S19. (a) CO and (b) H_2 evolution vs illumination time (3 h) of the MeCN/H₂O/TEOA solution (14mL 10:2:2 v/v/v) with different control experimental conditions.

Fig. S20. The SEM image and PXRD patterns of C- BMZIF_{1:1} after photocatalytic reaction.

Fig. S21. (a) Photoluminescence spectra (PL) of $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (40 mg) with different amount of C-BMZIF_{1:1} powder excited by 370 nm light. (b) Mott-Schottky plots of the C-BMZIF_{1:1} sample.

Fig. S22. Mass spectra analyses of the carbon source of the generated CO in the photochemical reduction of ${}^{13}CO_2$.

Fig. S23. The UV-vis absorption spectra of the CH₃CN solution containing $[Ru(bpy)_3]^{2+}$ and C-BMZIF after photocatalytic reaction, respectively. This clearly shows the carbonized ZIFs do not absorb $[Ru(bpy)_3]^{2+}$.

wt %	BMZIF _{5:1}	BMZIF _{3:1}	BMZIF _{1:1}	BMZIF _{1:3}	BMZIF _{1:5}	ZIF-67			
Theoretical value									
Co	4.34%	6.52%	13.13%	19.83%	22.09%	26.64%			
ІСР									
Co	1.33%	3.20%	10.5%	18.05%	18.7%	27.36%			
EDX									
Co	1.16%	2.39%	8.16%	14.07%	17.44%	22.93%			
wt %	C- BMZIF _{5:1}	C- BMZIF _{3:1}	C- BMZIF _{1:1}	C- BMZIF _{1:3}	C- BMZIF _{1:5}	C-ZIF- 67			
EDX									
Co	1.74%	4.76%	10.68%	24.71%	29.18%	40.46%			

Table S1. The mass percentages of Co in BMZIFs and C-BMZIFs.

	BMZIF _{5:1}	BMZIF _{3:1}	BMZIF _{1:1}	BMZIF _{1:3}	BMZIF _{1:5}	
Zn/Co	27.96	12.42	2.26	0.81	0.52	
	C-BMZIF _{5:1}	C-BMZIF _{3:1}	C-BMZIF _{1:1}	C-BMZIF _{1:3}	C-BMZIF _{1:5}	
Zn/Co	16.87	4.62	1.75	0.19	0.12	

Table S2. The Zn/Co molar ratio in BMZIFs and C-BMZIFs (quantified by EDX).

Table S3. TOF and yield of C-BMZIFs with different ratio of Zn/Co.

	C- ZIF-8	C- BMZIF5:1	C- BMZIF _{3:1}	C- BMZIF ₁₋₁	C- BMZIF _{1:3}	C- BMZIF1.5	C- ZIF-67
Co (%) (by EDX)		1.74	4.76	10.68	29.18	32.87	40.46
Η ₂ (μmol)	3.7	21.6	41.7	47.4	50.7	52.3	56.4
Yield (µmol·g _{cat} ⁻¹ ·h ⁻¹)	616	3600	6950	7900	8450	8717	9400
TOF (H ₂) (× 10 ⁻³)		3.4	2.4	1.2	0.47	0.43	0.38
CO (µmol)	7.2	41.3	63.8	47.5	40.2	35.9	41.7
Yield (µmol·g _{cat} ⁻ ¹ ·h ⁻¹)	1200	6883	10633	7916	6700	5983	6950
TOF (CO) (× 10 ⁻³)	-	6.5	3.7	1.2	0.38	0.30	0.28
Total (μmol)	10.9	62.9	105.5	94.9	90.9	88.2	98.1
TOF (total) (× 10 ⁻³)	-	9.9	6.1	2.4	0.85	0.73	0.66