Electronic Supplementary Material

Facile Synthesis of N,O-Codoped Hard Carbon at the Kilogram

Scale for Fast Capacitive Sodium Storage

Man Huang,¹ Baojuan Xi,¹ Zhenyu Feng,¹ Jing Liu,² Jinkui Feng,³ Yitai Qian,^{1,4} and Shenglin Xiong¹*

¹Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100,

PR China

²College of Materials Science and Engineering, Qingdao University of Science and

Technology, Qingdao 266042, China

³Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China

⁴Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China

*Correspondence and requests for materials should be addressed to S.L.X. (email: chexsl@sdu.edu.cn).

Figure S1. XRD pattern of HP-MIL-NH₂-53(AI).

Figure S2. SEM image of the HP-MIL-NH₂-53(AI) precursor.

Figure S3. Raman spectrum of NOHPHC cuttlefishes.

Figure S4. XPS survey spectrum of the NOHPHC cuttlefishes.

Figure S5. N_2 adsorption/desorption isotherm (A) and the corresponding pore size distribution (B) of NOHPHC cuttlefishes.

Figure S6. CV curves of the NOHPHC cuttlefishes in the voltage window of 0.005–3.0 V vs. Na/Na⁺ at a scan rate of 0.1 mV s⁻¹.

Figure S7. Long-term cycling performance of the NOHPHC electrode at a current density of 10 A g^{-1} .

Figure S8. Electrochemical impedance spectra (EIS) of the NOHPHC electrode after different cycles at a current density of 0.2 A g^{-1} .

Figure S9. FESEM images of the NOHPHC electrode after 100 cycles at 0.5 A g^{-1} .

Figure S10. The kilogram-scale preparation illustration of the NOHPHC cuttlefishes. (Note: The diameter of the autoclave is approximately 20 cm, and the volume of the glass beaker is 2 L.)

Figure S11. FESEM images of the NOHPHC-K cuttlefishes.

Figure S12. TEM image (A) and XRD pattern (B) of the homemade $Na_3V_2(PO_4)_3/C$. (C) Cycling performance at a current density of 100 mA g⁻¹.

Table S1. Cyclability (discharge capacity) and the rate performance comparison ofNOHPHC versus representative carbon materials in SIBs reported.

material	cyclability (discharge	rate performance	Ref.
	capacity)		
NOHPHC	112.5 mAh g ⁻¹ at 11 th cycle	143 mAh g ⁻¹ at 1 A g ⁻¹	This work
	113 mAh g ⁻¹ at 30000 th cycle	128 mAh g ⁻¹ at 2 A g ⁻¹	
	~100% capacity retention over	109 mAh g ⁻¹ at 5 A g ⁻¹	
	30000 cycles at 5 A g^{-1}	100 mAh g ⁻¹ at 10 A g ⁻¹	
		98 mAh g ⁻¹ at 20 A g ⁻¹	
biomedical carbon	342 mAh g ⁻¹ at 11 th cycle	290 mAh g ⁻¹ at 200 mA g ⁻¹	[S1]
	298 mAh g ⁻¹ at 300 th cycle	238 mAh g ⁻¹ at 500 mA g ⁻¹	
	88% capacity retention over 290	155 mAh g ⁻¹ at 1 A g ⁻¹	
	cycles at 100 mA g⁻¹	100 mAh g ⁻¹ at 2 A g ⁻¹	
		70 mAh g ⁻¹ at 5 A g ⁻¹	
hard carbon	340 mAh g ⁻¹ at 2 nd cycle	300 mAh g ⁻¹ at 100 mA g ⁻¹	[S2]
	310 mAh g ⁻¹ at 120 th cycle	240 mAh g ⁻¹ at ~300 mA g ⁻¹	
	88% capacity retention over 118	150 mAh g ⁻¹ at ~600 mA g ⁻¹	
	cycles at ~30 mA g^{-1}		
Nanocellular carbon foams	153 mAh g ⁻¹ at 2 nd cycle	140 mAh g⁻¹ at 200 mA g⁻¹	50
	137 mAh g ⁻¹ at 300 th cycle	120 mAh g ⁻¹ at 500 mA g ⁻¹	
	90% capacity retention over 298	100 mAh g⁻¹ at 1 A g⁻¹	
	cycles at 100 mA g⁻¹		
templated carbon	180 mAh g ⁻¹ at 2 nd cycle,	140 mAh g⁻¹ at 74 mA g⁻¹	[S3]
	120 mAh q ⁻¹ at 40 th cvcle	120 mAh q ⁻¹ at 740 mA q ⁻¹	
	66 7% capacity retention over 38	$100 \text{ mAh } a^{-1} \text{ at } 1.85 \text{ A } a^{-1}$	
	$avelaa at 74 mA a^{-1}$		
	cycles at 74 mA g		
highly disordered carbon	255 mAh g ⁻¹ at initial cycles	190 mAh g⁻¹ at 200 mA g⁻¹	51
	234 mAh g ⁻¹ at 180 th cycle	139 mAh g⁻¹ at 500 mA g⁻¹	
	92% capacity retention over 170	102 mAh g ⁻¹ at 1 A g ⁻¹	
	cycles at 100 mA g ⁻¹		
porous carbon	280 mAh g ⁻¹ at 10 th cycle	225 mAh g^{-1} at 500 mA g^{-1}	52
nanofiber	266 mAh g ⁻¹ at 100 th cycle	200 mAh g^{-1} at 1 A g^{-1}	
	95% capacity retention over 90	164 mAh g⁻' at 2 A g⁻'	
hollow corbon	cycles at 50 mA g^{-1}		IO 41
	255 mAn g ' at 10" cycle	210 mAn g + at 250 mA g ⁻¹	[54]
nanowires	220 mAh g⁻¹ at 200 th cycle		

	86% capacity retention over 190	149 mAh g ⁻¹ at 500 mA g ⁻¹	
	cycles at 50 mA g ⁻¹		
hallan arkan			
hollow carbon nanospheres	250 mAh g⁻¹ at 10 ^m cycle	168 mAh g⁻¹ at 200 mA g⁻¹	53
	160 mAh g⁻¹ at 100 th cycle	142 mAh g ⁻¹ at 500 mA g ⁻¹	
	64% capacity retention over 90	120 mAh g⁻¹ at 1 A g⁻¹	
	cycles at 100 mA g ⁻¹		
carbon nanosheets	ca. 260 mAh g ⁻¹ at 10 th cycle	190 mAh g ⁻¹ at 200 mA g ⁻¹	54
	ca. 155 mAh g⁻¹ at 200 th cycle	125 mAh g⁻¹ at 500 mA g⁻¹	
	60% capacity retention over 190	80 mAh g ⁻¹ at 1A g ⁻¹	
	cycles at 50 mA g ^{−1}		
interconnected	151 mAh g⁻¹ at 10 th cycle	150 mAh g⁻¹ at 200 mA g⁻¹	55
carbon	134.2 mAh g ⁻¹ at 200 th cycle	139 mAh g⁻¹ at 500 mA g⁻¹	
nanofibers	88.7% capacity retention over 190	132 mAh g⁻¹ at 1 A g⁻¹	
	cycles at 200 mA g⁻¹		
carbonized peat	284 mAh q ⁻¹ at 10 th cycle	250 mAh g⁻¹ at 200 mA g⁻¹	56
moss	255 mAh g ⁻¹ at 210 th cycle	203 mAh g^{-1} at 500 mA g^{-1}	
	90% capacity retention over 200	150 mAh g ⁻¹ at 1 A g ⁻¹	
	cycles at 100 mA g ^{−1}		
	, ,		
carbon nanofibers	200 mAh g ⁻¹ at 2 nd cycle	200 mAh g⁻¹ at 200 mA g⁻¹	57
	180 mAh g ⁻¹ at 300 th cycle	160 mAh g⁻¹ at 500 mA g⁻¹	
	90% capacity retention over 298	120 mAh g⁻¹ at 1 A g⁻¹	
	cycles at 200 mA g ⁻¹		
carbon fibers	350 mAh g ⁻¹ at 2 nd cycle	210 mAh g ⁻¹ at 200 mA g ⁻¹	58
	243 mAh g ⁻¹ at 100 th cycle	175 mAh g ⁻¹ at 500 mA g ⁻¹	
	70% capacity retention over 98	153 mAh g⁻¹ at 1 A g⁻¹	
	cycles at 50 mA g⁻¹		
Nitrogen-Doped	187.3 mAh g ⁻¹ at 50 th cycle	no reported	S5
Graphene	247.5 mAh g ⁻¹ at 500 th cycle		
Sheets	132.1% capacity retention over		
	450 cycles at 100 mA g⁻¹		
sulfur-doped disordered carbon	EG1 mAb at a tinitial availa	$275 \text{ mAb } a^{-1} \text{ ot } 200 \text{ mA } a^{-1}$	56
	$271 \text{ mAn } g^{-1}$ at initial cycle	215 MAR g ' at 800 MA g '	30
	21 i mAn g rat 1000" cycle 85.9%	211 man g ' at 2A g '	
	capacity retention over 990 cycles	158 mAn g ' at 14A g ⁻ '	

	at 1 A g⁻¹		
N/S co-doped macroporous carbon	482 mAh g ⁻¹ at initial cycle	162 mAh g⁻¹ at 5A g⁻¹	S7
	480 mAh g ⁻¹ at 500 th cycle	255 mAh g ⁻¹ at 2A g ⁻¹	
	93% capacity retention over 490	301 mAh g ⁻¹ at 1A g ⁻¹	
	cycles at 100 mA g ⁻¹		
carbon quantum dots	187.6 mAh g⁻¹ at initial cycle	90 mAh g ⁻¹ at 20 A g ⁻¹	S8
	150.1 mAh g ⁻¹ at 3000 th cycle	104 mAh g ⁻¹ at 10 A g ⁻¹	
	at 2.5 A g ⁻¹	130 mAh g⁻¹ at 5 A g⁻¹	
Nitrogen-doped carbon/graphene	303 mAh g ⁻¹ at initial cycle	139 mAh g⁻¹ at 2 A g⁻¹	S9
	270 mAh g ⁻¹ at 200 th cycle	177 mAh g ⁻¹ at 1 A g ⁻¹	
	89% capacity retention over 190	207 mAh g⁻¹ at 0.5 A g⁻¹	
	cycles at 50 mA g⁻¹		
3D porous carbon-coated graphene	824 mAh g ⁻¹ at initial cycle	207 mAh g ⁻¹ at 10 A g ⁻¹	S10
	323 mAh g ⁻¹ at 1000 th cycle	218 mAh g ⁻¹ at 5 A g ⁻¹	
	89% capacity retention over 990	251 mAh g ⁻¹ at 2 A g ⁻¹	
	cycles at 50 mA g ⁻¹		

- [1] E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton, D. Mitlin, ACS nano 2014, 8, 7115.
- [2] A. Ponrouch, A. R. Goñi, M. R. Palacín, *Electrochem. Commun.* 2013, 27, 85.
- [3] S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Energy Environ. Sci. 2011, 4, 3342.
- [4] Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, J. Liu, *Nano lett.* 2012, 12, 3783.
- [5] L. L. Tian, S. B. Li, M. J. Zhang, S. K. Li, L. P. Lin, J. X. Zheng, Q. C. Zhuang, K. Amine, F. Pan, ACS Appl. Mater. Interfaces 2016, 8, 26722.
- [6] W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, Energy Environ. Sci. 2015, 8, 2916.
- [7] C. Yang, W. Li, Z. Yang, L. Gu, Y. Yu, Nano Energy 2015, 18, 12.
- [8] H. Hou, C. E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 2015, 27, 7861.
- [9] H. Liu, M. Jia, B. Cao, R. Chen, X. Lv, R. Tang, F. Wu, B. Xu, *J. Power Sources* 2016, 319, 195.
- [10] D. Zhou, Y. Liu, W. L. Song, X. Li, L. Z. Fan, Y. Deng, Chem. Eur. J. 2017, 316, 645.