## **Electronic Supplementary Information**

## A Bifunctional Catalyst for Efficient Dehydrogenation and Electro-oxidation of Hydrazine

Jun Wang,<sup>a,b</sup> Asim Khaniya,<sup>a</sup> Lin Hu,<sup>c</sup> Melanie J. Beazley,<sup>d</sup> William E. Kaden<sup>a,b</sup> and Xiaofeng Feng\*<sup>a,b,c</sup>

<sup>a</sup> Department of Physics, University of Central Florida, Orlando, Florida 32816, United States

<sup>b</sup> Energy Conversion and Propulsion Cluster, University of Central Florida, Orlando, Florida 32816, United States

<sup>c</sup> Department of Materials Science and Engineering, University of Central Florida, Orlando,

Florida 32816, United States

<sup>d</sup> Department of Chemistry, University of Central Florida, Orlando, FL 32816, United States

\*E-mail: Xiaofeng.Feng@ucf.edu



Fig. S1. Overview TEM image of the carbon-black-supported Pt<sub>0.2</sub>Ni<sub>0.8</sub>-L nanoparticles.



**Fig. S2.** XPS C 1s spectra of carbon-black-supported  $Pt_{0.2}Ni_{0.8}$  and  $Pt_{0.2}Ni_{0.8}$ -L catalysts before and after Ar<sup>+</sup> sputtering, respectively. Deconvolutions of the peaks are provided; in addition to the C-C peak at 284.8 eV, two additional features are present at ~286 eV and ~289 eV in all spectra in positions consistent with the typical O-containing carbonaceous species among other possibilities (that is, C-O-C and O-C=O, respectively). The carbon black support of the  $Pt_{0.2}Ni_{0.8}$  catalyst appears to contain a greater abundance of more readily removed terminal functional groups in the "C-O-C" designated binding energy region relative to the  $Pt_{0.2}Ni_{0.8}$ -L sample.



**Fig. S3.** XPS spectra in the Pt 4f and Ni 2p regions for  $Pt_{0.2}Ni_{0.8}$  and  $Pt_{0.2}Ni_{0.8}$ -L samples. In the Pt 4f region, two peaks with binding energies of 71.7 and 75.0 eV are observed, corresponding to the  $4f_{7/2}$  and  $4f_{5/2}$  levels of metallic  $Pt^0$ . Unlike Pt, the Ni on the surface is not detected in a metallic state after transfer through air into the XPS vacuum system (lower frame), but is instead present in an oxidized form consistent with Ni<sup>2+</sup>. After mild sputtering with 2 kV Ar<sup>+</sup> (upper frame), a Ni<sup>0</sup> shoulder shows up, which is more likely due to the exposure of subsurface metallic Ni within the supported particles.



**Fig. S4.** Representative TEM images of the carbon-black-supported  $Pd_{0.2}Ni_{0.8}$ ,  $Au_{0.2}Ni_{0.8}$ , Pt, and Ni nanoparticles. A comparison of the images may indicate that the precipitation-reduction method is more effective for the synthesis of ultrafine and homogenous  $Pd_{0.2}Ni_{0.8}$  nanoparticles.

|                                          | M content / wt% | Ni content / wt% |
|------------------------------------------|-----------------|------------------|
| Pt0.2Ni0.8/C                             | 14.5            | 17.2             |
| Pt <sub>0.2</sub> Ni <sub>0.8</sub> -L/C | 14.5            | 17.2             |
| Pd0.2Ni0.8/C                             | 8.1             | 20.1             |
| Au0.2Ni0.8/C                             | 7.5             | 17.2             |
| Pt/C                                     | 49.5            | 0                |
| Ni/C                                     | 0               | 21.1             |

**Table S1.** A summary of the actual metal contents by mass in the catalysts, which were determined

 by inductively coupled plasma mass spectrometry (ICP-MS).



**Fig. S5.** Time-course plots for the catalytic decomposition of  $N_2H_4$ · $H_2O$  over  $Pt_xNi_{(1-x)}$  catalysts in 1 M NaOH solution at 50 °C.



**Fig. S6.** Time-course plots for the catalytic decomposition of N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O on the (a) Pt<sub>0.2</sub>Ni<sub>0.8</sub> and (b) Pt<sub>0.2</sub>Ni<sub>0.8</sub>-L catalysts in 1 M NaOH solution at different temperatures.

| Catalyst                                        | Additive | Temp. / K | Selectivity | TOF   | E <sub>a</sub> / kJ mol <sup>-1</sup> | Reference                                                  |
|-------------------------------------------------|----------|-----------|-------------|-------|---------------------------------------|------------------------------------------------------------|
| D4 N: /C                                        | NaOU     | 272       | 100 H2 / %  | / n · | 15 7                                  | This work                                                  |
| Ni88Pt12@MIL-101                                | NaOH     | 323       | 100         | 350   | 55.5                                  | <i>Int. J. Hydrogen Energy</i> , 2014,<br><b>39</b> , 9726 |
| Ni66Rh34@ZIF-8                                  | NaOH     | 323       | 100         | 140   | 58.1                                  | ChemCatChem, 2014, 6, 2549                                 |
| NiRh4                                           | /        | 298       | 100         | 9.6   | /                                     | J. Am. Chem. Soc., 2009, <b>131</b> , 18032                |
| NiRh4.4/graphene                                | NaOH     | 298       | 100         | 13.7  | /                                     | Energy Environ. Sci., 2012, <b>5</b> ,<br>6885             |
| Ni0.9Pt0.1/Ce2O3                                | NaOH     | 298       | 100         | 28.1  | 42.3                                  | J. Mater: Chem. A, 2013, <b>1</b> ,<br>14957               |
| Ni0.95Ir0.05                                    | /        | 298       | 100         | 2.2   | /                                     | Chem. Commun., 2010, <b>46</b> ,<br>6545                   |
| Ni/Al <sub>2</sub> O <sub>3</sub>               | /        | 303       | 93          | 2.2   | 49.3                                  | Angew. Chem., Int. Ed., 2012, <b>51</b> ,<br>6191          |
| Rh                                              | /        | 298       | 43.8        | 2.5   | /                                     | J. Am. Chem. Soc., 2009, <b>131</b> ,<br>9894              |
| (Ni5Pt5)1-<br>(CeO <sub>x</sub> )0.3/NG         | NaOH     | 298       | 100         | 408   | 38.7                                  | Nano Res., 2017, <b>10</b> , 2856                          |
| Pt0.6Ni0.4/PDA-rGO                              | NaOH     | 303       | 100         | 903   | 33.4                                  | J. Mater: Chem. A, 2015, 3, 23090                          |
| Ni <sub>0.58</sub> Pt <sub>0.42</sub> /graphene | NaOH     | 323       | 100         | 846   | 23.9                                  | J. Alloy. Compd., 2017, <b>695</b> , 3036                  |

**Table S2.** Comparison of the activity for hydrazine dehydrogenation over different catalysts.



**Fig. S7.** Durability test of the  $Pt_{0.2}Ni_{0.8}$  catalyst for complete decomposition of  $N_2H_4$ · $H_2O$  in 1 M NaOH at 50 °C. Additional aliquot of  $N_2H_4$ · $H_2O$  was introduced into the reaction vessel after the completion of the previous run.

| <i>c</i> (N <sub>2</sub> H <sub>4</sub> ) / M | 0   | 0.1 | 0.3 | 0.5 |
|-----------------------------------------------|-----|-----|-----|-----|
| pН                                            | 7.2 | 8.6 | 9.2 | 9.5 |

Table S3. The pH values of 0.1 M PBS with different concentrations of  $N_2H_4$ .