B-site doping effects of $NdBa_{0.75}Ca_{0.25}Co_2O_{5+\delta}$ double perovskite catalysts for oxygen evolution and reduction reactions

Nam-In Kim ^{a,†}, Sung-Hwa Cho ^{a,†}, Se Hwan Park ^b, Young Joo Lee ^b, Rana Arslan Afzal ^a, Jeseung Yoo ^a, Young-Soo Seo ^a, Yun Jung Lee ^{b, **}, Jun-Young Park ^{a, *}

Supplementary Figures

Fig. S1. Rietveld refinements of NBCC-based catalysts processed by the Fullprof program.

Fig. S2. Morphological characteristics of NBCCFe/N-rGO hybrid catalyst analyzed by HRTEM.

	Nd	Ba	Ca	Co	
а <u>1µт</u>					Donants
h					Dopanto
<u>1μm</u>	a La el				Fe 5.38 at. %
C The second					
<u>1μm</u>					5.22 at. %
b		S. 1884 2884			Ni
ц <u>1µт</u>			1 1 1		5.29 at. %
e					Cu
<u>1µт</u>				Č e se s	5.30 at. %
f N-rGO					Fe
<u> </u>					
NBCCFe 1 µm					5.06 at. %

Fig. S3. Surface morphology and distribution of elemental compositions of catalysts by FE-SEM and EDX mapping: (a) NBCC (b) NBCCFe (c) NBCCMn (d) NBCCNi, (e) NBCCCu, and (f) NBCCFe/N-rGO.

Fig. S4. Cyclic voltammogram curves of the catalysts with different scan rates (10-200 $\text{mV}\cdot\text{s}^{-1}$). (a) NBCC, (b) NBCCFe, (C) NBCCMn, (d) NBCCNi, (e) NBCCCu, and (f) NBCCFe/N-rGO.

Fig. S5. Linear plots for the measured charging current (i_c) versus scan rate for calculation of the ECSA. (a) NBCC, (b) NBCCFe, (C) NBCCMn, (d) NBCCNi, (e) NBCCCu, and (f) NBCCFe/N-rGO. Double layer capacitances of the materials were determined from the linear plots.

Fig. S6. (a) Specific activity ($\mu A \cdot cm^{-2}_{ECSA}$) and (b) mass activity ($A \cdot g^{-1}$) of catalysts in OER polarization curves normalized by the ECSA at $\eta = 0.4$ V in 0.1 M KOH solution.

Fig. S7. (a) Schematic illustration (top) and Actual photograph (bottom) of the RRDE tip. (b) The continuous OER (disk) to ORR (ring) process initiated on a RRDE (N₂-saturated 0.1 M KOH, ring potential: 0.40 V).

Fig. S8. The ring currents of NBCC-based catalysts on a RRDE (1,600 rpm) in 0.1 M KOH solution (ring potential: 0.40 V).

Fig. S9. Images of oxygen bubble generation in a large-scale water electrolysis half-cell (1 cm²) using the NBCCFe catalyst at $\eta = 0.4$ V (left) and $\eta = 0.65$ V (right).

Fig. S10. 1,500th OER polarization curves and 10,000th ORR polarization curves of NBCC and doped-NBCC catalysts.

2. Supplementary Tables

Table S1. Comparison of oxygen activity of NBCCFe and NBCCFe/N-rGO with reported perovskite-based electrocatalysts.

Catalysts	E_{ORR} (V) at $j = -3$ mA cm ⁻ 2	E_{OER} (V) at $j = 10$ mA cm ⁻ ²	Oxygen activity ^a (V)	Reference
NBCCFe/N-rGO	0.848	1.609	0.761	This Work
NBCCFe	0.679	1.627	0.948	This Work
Core-Corona LaNiO ₃ /N-CNT	0.64	1.67	1.03	Nano Lett. 2012, 12, 1946 (Ref. 1)
$La_{0.3}(Ba_{0.5}Sr_{0.5})_{0.7}Co_{0.8}Fe_{0.2}O_{3.5}$	0.58	1.59	1.01	Angew. Chem. Int. Ed. 2014, 53, 4582 (Ref. 2).
porous CaMnO ₃	0.8	1.81	1.01	Adv. Mater. 2014, 26, 2047 (Ref. 3).
Ar treated Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O ₃ /KB	0.62	1.77	1.05	Adv. Energy Mater. 2015, 5, 1501560 (Ref. 4)
LaTi _{0.65} Fe _{0.35} O _{3-ð} /N-CNR	0.72	1.77	1.05	Nano Energy 2015, 15, 92 (Ref. 5).
La _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O ₃ -PR/N- rGO	0.81	1.73	0.92	Nano Energy 2014, 10, 192 (Ref. 6).
La _{0.58} Sr _{0.4} Fe _{0.2} Co _{0.8} O ₃ /N-CNT	0.7	1.63	0.93	Electrochimica Acta 2016, 208, 25 (Ref. 7).
Multi-shelled La _{0.9} Sr _{0.1} CoO ₃	0.64	1.76	1.12	J. Mater. Chem. A, 2015, 3, 22448 (Ref. 8).
NdBa _{0.5} Sr _{0.5} Co _{1.5} Fe _{0.5} O _{5+δ} /CB	0.651	1.624	0.973	J. Mater. Chem. A, 2017, 5, 13019 (Ref. 9).
$PrBa_{0.25}Sr_{0.75}Co_2O_{5+\delta}/AB$	0.68	1.65	0.97	Journal of Power Sources 2016, 334, 86 ((Ref. 10).
Mn-oxide film	0.73	1.77	1.04	J. Am. Chem. Soc. 2010, 132, 13612 (Ref. 11).
Co ₃ O ₄ /N,S-doped carbon	0.82	1.61	0.79	Adv. Funct. Mater. 2014, 24, 7655 (Ref. 12).

MnO _x on stainless steel mesh	0.82	1.62	0.8	Energy Environ. Sci. 2014, 7, 2017 (Ref. 13).
Mn _x O _y /N-doped Carbon	1.68	0.81	0.87	Angew. Chem. Int. Ed. 2014, 53, 8508 (Ref. 14).
CNT@NCNT	0.65	1.73	1.08	Adv. Funct. Mater. 2014, 24, 5956 (Ref. 15)
N-doped graphene/CNT	0.64	1.65	0.96	Small 2014, 10, 2251 (Ref. 16).
N,S,Fe-doped Carbon	0.87	1.78	0.91	J. Am. Chem. Soc. 2014, 136, 14486 (Ref. 17).
N-doped Carbon	0.77	1.61	0.84	Nat. Commun. 2013, 4, 2390 (Ref. 18).

References

- Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, Z. Chen, Highly Active and Durable Core– Corona Structured Bifunctional Catalyst for Rechargeable Metal–Air Battery Application, Nano Lett. 12 (2012) 1946-1952.
- J.-I Jung, H.Y. Jeong, J.-S. Lee, M.G. Kim, J. Cho, A Bifunctional Perovskite Catalyst for Oxygen Reduction and Evolution, Angew. Chem. Int. Ed. 53 (2014) 4582-4586.
- X. Han, F. Cheng, T. Zhang, J. Yang, Y. Hu, J. Chen, Hydrogenated Uniform Pt Clusters Supported on Porous CaMnO₃ as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution, Adv. Mater. 26 (2014) 2047-2051.
- J.-I. Jung, S. Park, M-G. Kim, J. Cho, Tunable Internal and Surface Structures of the Bifunctional Oxygen Perovskite Catalysts, Adv. Energy Mater. 5 (2015) 1501560.
- M. Prabu, P. Ramakrishnan, P. Ganesan, A. Manthiram, S. Shanmugam, LaTi_{0.65}Fe_{0.35}O_{3-δ} nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries, Nano Energy 15 (2015) 92-103.

- H.W. Park, D.U. Lee, P. Zamani, M.H. Seo, L.F. Nazar, Z. Chen, Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries, Nano Energy 10 (2014) 192-200.
- K. Elumeeva, J. Masa, J. Sierau, F. Tietz, M. Muhler, W. Schuhmann, Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes, Electrochim. Acta 208 (2016) 25-32.
- S. Bie, Y. Zhu, J. Su, C. Jin, S. Liu, R. Yang, J. Wu, One-pot fabrication of yolk–shell structured La_{0.9}Sr_{0.1}CoO₃ perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions, J. Mater. Chem. A 3 (2015) 22448-22453.
- N.-I. Kim, R.A. Afzal, S.R. Choi, S.W. Lee, D. Ahn, S. Bhattacharjee, S.-C. Lee, J.H. Kim, J.-Y. Park, Highly active and durable nitrogen doped-reduced graphene oxide/double perovskite bifunctional hybrid catalysts, J. Mater. Chem. A 5 (2017) 13019-13031.
- Z. Wu, L.-P. Sun, T. Xia, L.-H. Huo, H. Zhao, A. Rougier, J.C. Grenier, Effect of Sr doping on the electrochemical properties of bi-functional oxygen electrode PrBa₁. _xSr_xCo₂O_{5+δ}, J. Power Sources 334 (2016) 86-93.
- Y. Gorlin, T.F. Jaramillo, A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation, J. Am. Chem. Soc. 132 (2010) 13612-13614.
- C. Zhang, M. Antonietti, T.-P. Fellinger, Blood Ties: Co₃O₄ Decorated Blood Derived Carbon as a Superior Bifunctional Electrocatalyst, Adv. Funct. Mater. 24 (2014) 7655-7665.
- J.W.D. Ng, M. Tang, T.F. Jaramillo, A carbon-free, precious-metal-free, highperformance O₂ electrode for regenerative fuel cells and metal–air batteries, Energy Environ. Sci. 7 (2014) 2017-2024.

- J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grützke, P. Weide, M. Muhler, W. Schuhmann, Mn_xO_y/NC and Co_xO_y/NC Nanoparticles Embedded in a Nitrogen-Doped Carbon Matrix for High-Performance Bifunctional Oxygen Electrodes, Angew. Chem. Int. Ed. 53 (2014) 8508-8512.
- G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D.S. Su, Toward Full Exposure of "Active Sites": Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity, Adv. Funct. Mater. 24 (2014) 5956-5961.
- 16. G.-L. Tian, M.-Q. Zhao, D. Yu, X.-Y. Kong, J.-Q. Q. Zhang, F. Wei, Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction, small 10 (2014) 2251-2259.
- N.R. Ashraie, J.P. Paraknowitsch, C. Göbel, A. Thomas, P. Strasser, Noble-Metal-Free Electrocatalysts with Enhanced ORR Performance by Task-Specific Functionalization of Carbon using Ionic Liquid Precursor Systems, J. Am. Chem. Soc. 136 (2014) 14486-14497.
- Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation, Nat. Commun., 4 (2013) 2390.