Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Unexpectedly high electrochemical performances of monoclinic Na_{2.4}V₂(PO₄)₃/Conductive polymer composite for Na-ion batteries

Yongseok Lee^a, Jung-Keun Yoo^b, Youngseok Oh^b, Hyunyoung Park^a, Wonseok Go^a, Seung-Taek Myung^{a,*} and Jongsoon Kim^{a,*}

^aDepartment of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea.

^bCarbon Composites Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon, Republic of Korea

Corresponding Authors: Prof. Seung-Taek Myung (E-mail: smyung@sejong.ac.kr)

Corresponding Authors: Prof. Jongsoon Kim (E-mail: jongsoonkim@sejong.ac.kr)

Supporting Figure S1 XRD patterns of M-LVP/PEDOT composite and pristine M-LVP.

Supporting Figure S2 TGA profile of M-LVP/PEDOT composite and pristine M-LVP.

Supporting Figure S3 (a) Preparation process of M-NVP/PEDOT composite through electrochemical ion-exchange, (b) *Ex-situ* XRD patterns of M-LVP/PEDOT, M-VP/PEDOT and M-NVP/PEDOT

Supporting Figure S4 V K-edge XANES analyses of M-LVP/PEDOT, M-NVP/PEDOT and

M-VP/PEDOT.

Supporting Figure S5 The SEM images of M-NVP/PEDOT

Supporting Figure S6 FT-IR spectra of M-NVP/PEDOT and Pristine M-NVP

Supporting Figure S7 EIS measurement of M-NVP/PEDOT and Pristine M-NVP that shows their charge-transfer resistance.

Supporting Figure S8 The rate cycling performance of M-NVP/PEDOT composite and pristine M-NVP from C/10 to 10C.

Supporting Figure S9 Cyclic performance of M-NVP/PEDOT and pristine M-NVP at various

current densities.

Supporting Figure S10 The comparison of (a) XRD patterns and (b-c) SEM images of M-NVP/PEDOT electrode measured after 1 cycle and 500 cycles.

Supporting Figure S11 Experimentally measured and discharge curve of M-NVP/PEDOT composite at the voltage range between 4.25 V and 1.5 V (*vs.* Na/Na⁺) and its predicted curve obtained using first-principles calculations

Supporting Figure S12 Ex situ XRD patterns of M-NVP/PEDOT at various voltages.

Supporting Figure S13 Change in (a) volume, (b) *a* lattice parameter, (c) *b* lattice parameter, and (d) *c* lattice parameter of $Na_xV_2(PO_4)_3$ ($0 \le x \le 2.4$) samples with standard deviations.

	Na	Li	v	Р
M-LVP/PEDOT	0	2.979	1.997	2.983
M-VP/PEDOT	0	0.008	1.993	2.991
M-NVP/PEDOT	2.413	0.007	1.998	2.987

Supporting Table T1 ICP analyses on the atomic ratio of Na, Li, V, P in the M-LVP/PEDOT, M-VP/PEDOT and M-NVP/PEDOT.

Atom	Multiplicity	x	У	z	Biso	Occupancy
Na1	4e	0.3817	0.2397	0.3442	1.328	0.620
Na2	4e	0.2903	0.4918	0.5494	1.328	0.898
Na3	4e	0.2586	0.2716	0.0639	1.328	0.891
V1	4e	0.1073	0.4599	0.2428	0.842	1.000
V2	4e	0.3911	0.4683	0.7618	0.842	1.000
P1	4e	0.1443	0.1052	0.1055	0.824	1.000
P2	4e	0.3463	0.1139	0.6020	0.824	1.000
P3	4e	0.5002	0.2509	0.0358	0.824	1.000
01	4e	0.3366	0.0993	0.4299	0.448	1.000
02	4e	0.1522	0.1098	0.9210	0.448	1.000
03	4e	0.2590	0.4867	0.3579	0.448	1.000
04	4e	0.2136	0.4989	0.8038	0.447	1.000
05	4e	0.0404	0.0642	0.1696	0.448	1.000
06	4e	0.4739	0.0808	0.6394	0.448	1.000
07	4e	0.0629	0.3794	0.4449	0.448	1.000
08	4e	0.4019	0.3257	0.9326	0.448	1.000
09	4e	0.4290	0.1638	0.1835	0.448	1.000
010	4e	0.0914	0.1586	0.6157	0.448	1.000
011	4e	0.1838	0.2693	0.1793	0.448	1.000
012	4e	0.3199	0.2847	0.6356	0.448	1.000

Supporting Table T2 detailed structural information of N-NMP/PEDOT.

	a (Å)	b (Å)	c (Â)	β(Å)
M-LVP/PEDOT	8.5932(5)	8.5904(4)	12.0292(6)	90.465(3)
M-VP/PEDOT	8.7760(18)	8.5095(7)	11.938(2)	91.716(15)
M-NVP/PEDOT	8.6445(5)	8.7076(3)	12.0433(10)	90.991(7)

Supporting Table T3 The comparison of lattice parameters of M-LVP/PEDOT, M-VP/PEDOT and M-NVP/PEDOT composites calculated by Rietveld refinement